通过幂等的定义,给出了两种符号幂等模式矩阵的结构。
Meanwhile, we give two structures of the sign idempotent by the definition of idempotent.
声明队列是幂等的——只有在它不存在的情况下才会被创建。
Declaring a queue is idempotent - it will only be created if it doesn't exist already.
如果所依赖服务的API是幂等的,那就意味着可以安全地对失败请求进行重试。
If the API of a dependent service is idempotent, that means it is safe to retry failed requests.
这也就是为喵客户端必须优雅地处理重复响应,而RPC服务最好的幂等的。
That's why on the client we must handle the duplicate responses gracefully, and the RPC should ideally be idempotent.
尽管不拥有这个属性的请求也可能是幂等的,但是XCAP不允许这样的请求。
Although a request can still be idempotent if it does not possess this property, XCAP does not permit such requests.
从设计的角度看,这也意味着消息处理的次数会幂等增加。
From a design standpoint this means that message processing has to be idempotent.
一种解决方案要求活动是等幂的,或者能够通过某种方式处理第二次调用。
One solution requires that activities are idempotent, or can somehow deal with the second invocation.
对adapt的调用应该是等幂的。
如果您这样做了,请设计一个幂等(idempotent)方法:也就是说,无论这个方式是被调用一次还是十次,确保它总是实现相同的功能。
If you do this, design the method to be idempotent: That is, make sure it does exactly the same thing whether it's invoked once or a dozen times.
由于并发相关操作的失败而导致失败的等幂业务服务可以重试。
An idempotent business service that fails with a concurrency related failure can be retried.
safe:在wsdl扩展命名空间中,此属性声明该操作是等幂的。
WSDLX: safe: From the WSDL extensions namespace, this attribute declares that this operation is idempotent.
例如,GET、POST和DELETE方法是等幂的,即多次执行它们与执行一次的结果相同。
For example, the GET, PUT, and DELETE methods are idempotent, meaning that the result of executing them multiple times is the same as that of executing them once.
例如,GET应该是安全的只读幂等(idempotent)调用,它不应该以任何方式更改资源的状态。
For example, GET should be a safe, read-only idempotent call and should not alter the state of the resource in any manner.
基于进入系统的时间,写操作具有幂等性(不管操作多少次结果都不变的性质,比如取绝对值的函数就具有幂等性)和交换性(操作顺序不影响结果,比如加法就具有交换性)。
Write operations are idempotent and commutative, based on the time they enter the system.
刷新缓存时会损失一些服务器加载数据和一些带宽;这并不违背基本的等幂性。
All you lose in flushing the cache is a little server load and some bandwidth; it does not violate underlying idempotency.
等幂是REST的基本思想:无论何时发起,相同的请求—可能是客户机信息的编码—应该返回相同的数据。
Idempotency is the central idea in REST: the same request - perhaps encoding client information - should return the same data whenever it is made.
所谓等幂,就是指所涉及的修改不应该直接影响GET请求本身。
The idea behind idempotency is merely that the change involved should not be a direct effect of the GET request itself.
GET是应该没有副作用的操作,即所谓的等幂性属性。
GET is an operation that should be free of side effects, a property also known as idempotence.
刻划了S-正则半群上的极大幂等元分离同余并给每个S-正则半群一个基本表示。
The maximum idempotent - separating congruence on a S - semigroup is characterized and a fundamental representation of a such semigroup is given.
结果证明lispy . py的设计不能满足等幂的目标。
It turns out the design of lispy.py fails the idempotence goal.
像create这样的非幂等操作所造成的第三个影响是我们不能再将:success作为预期响应。
A third implication of mutating operations such as create is that we should not expect a: success response.
如果它是有限和非空的,则它必须包含至少一个幂等元。
If it is finite and nonempty, then it must contain at least one idempotent.
左半正规纯正半群是幂等元集形成左半正规带的纯正半群。
A left seminormal orthodox semigroup is an orthodox semigroup whose idempotents form a left seminormal band.
每个子群精确的包含一个幂等元,也就是这个子群的单位元。
Each subgroup contains exactly one idempotent, namely the identity element of the subgroup.
正则半群上的同余是由其幂等元同余类所完全决定的。
The congruences on a regular semigroup is completely determined by its idempotent congruence classes.
由此推出了P -正则半群上的每个P -同余完全是由其包含幂等元的部分核正规系所决定的。
So We have prove that each P-congruence on P-regular semigroups is uniquely determined by its partial kernel normal systems containing idempotent elements.
首先利用弱理想,引入了弱全幂等环的概念。
The conception of weak completely idempotent rings is introduced.
本文主要研究加法幂等元满足置换等式的纯整半环。
This paper deals with orthodox semirings whose additive idempotents satisfy permutation identities.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
应用推荐