不要把沿圆周的切向加速度与向心加速度混淆。
Do not confuse ever the tangential acceleration, which is along the circumference, with centripetal acceleration.
这样我们,就能求出向心加速度。
And we can calculate now what the centripetal acceleration is.
我们称之为“向心加速度
若向心加速度0,则此时绳子会绷紧。
If the centripetal acceleration is larger than 10 then, of course, the string will be tight.
但这里却没有力,能提供向心加速度。
But there is nothing to provide that centripetal acceleration.
在此注意,向心加速度与r是成正比的。
Notice that the acceleration, the centripetal acceleration is linear in r.
距离近一百倍,而向心加速度大一万倍。
100 times closer has a 10,000 times larger centripetal acceleration.
这叫做向心加速度。
小球受到绳子的拉力,这就是向心加速度的来源。
This ball is feeling a pull from the string and that provides it with the centripetal acceleration.
绳子连接着,转盘与小球,因此,其拉力产生,向心加速度。
The string forms the connection between the rotating disc and the ball and therefore, the pull is responsible for the centripetal acceleration.
则现在,必然等于m乘以向心加速度,嘿,看起来太眼熟了。
So what I get now is must be m times the centripetal acceleration Hey! That looks very familiar.
前提要求就是,具有向心加速度,朝这个方向,向心力的作用。
There is a requirement that there is a centripetal acceleration, which is in this direction, a centripetal.
但是别把这个切向加速度,它是沿着圆周的,和向心加速度混淆。
Do not confuse ever the tangential acceleration, which is along the circumference, with a centripetal acceleration.
有趣的是,感觉到的重力…,向心加速度…,在这里没有任何重力。
What is interesting, that the perceived gravity-- and therefore the centripetal acceleration-- There is nothing; there is no gravity there.
如果此时,我想让你转得更快,即v更大,那么向心加速度也会随之增大。
Now I'm going to swing you faster, so the v will go up and so the centripetal acceleration will go up.
因此得出无懈可击的结论,这向心加速度,是由引力引起,并呈1/r2递减。
Therefore, you cannot escape the conclusion that the centripetal acceleration which is the result of gravity, falls off as one over R squared.
而冥王星的距离,是水星的一百倍,那么它的引力与向心加速度,均是水星的一万分之一。
So if you are 100 times further away like Pluto compared to Mercury then the gravitational... the centripetal acceleration which is due to gravity is 10,000 times smaller.
现在我要把向心加速度,和能被感知到的重力联系起来,来看看我们是如何感知重力的。
I'm going to make a connection between centripetal acceleration and perceived gravity The way that you perceive gravity.
先前在讲行星时,我们讨论过这个,我们讨论的是,匀速圆周运动,而且我们评估了,向心加速度。
We have discussed that earlier when we dealt with the planets, and we dealt with uniform circular motions, and we evaluated the centripetal acceleration.
所以就会产生向心加速度,在这个方向上,这些微粒会说,“啊哈,重力是这个方向的。”
Therefore, there is now a centripetal acceleration in this direction, and so the particles now say "Aha! Gravity is in this direction."
容器里的液体由于线性或向心加速度作用而对液体表面轮廓和流体静压分布产生的效果可以计算出来。
The effects on liquid surface profile and hydrostatic pressure distribution caused by the linear or centripetal acceleration of a liquid in a container can be calculated.
所以你需要,This,v,equals,omega,rv=ω,向心加速度,依然毫无商量余地。
r and therefore, you require centripetal acceleration towards the center-- that is non-negotiable.
绳子会说,“啊哈,这家伙需要我来帮忙拉了“,因为此时只靠重力加速度,不足以提供向心加速度了,需要额外的补充
The string will say "Aha! I'm going to pull now on this person "because the gravitational acceleration alone is not enough-- I need some extra pull."
针对这一应用要求,根据汽车转向机构的受力分析得到的转向力矩,对影响汽车转向力矩的主要因素进行了分析,并具体对与向心加速度有关的部分转向力矩的实验曲线用最小二乘法进行了解析式拟合。
Aiming at this practical request, the factors of effect on automotive steering torque are analyzed according to the steering torque that is got from the stress analyzing of the steering gear.
针对这一应用要求,根据汽车转向机构的受力分析得到的转向力矩,对影响汽车转向力矩的主要因素进行了分析,并具体对与向心加速度有关的部分转向力矩的实验曲线用最小二乘法进行了解析式拟合。
Aiming at this practical request, the factors of effect on automotive steering torque are analyzed according to the steering torque that is got from the stress analyzing of the steering gear.
应用推荐