在加权最小二乘的基础上,结合PDE正则化,提出了一种视频图像序列超分辨率重建的自适应滤波方法。
An adaptive filter for video image sequence super resolution reconstruction is proposed on the basis of the weighted least square and PDE regularization in this paper.
所提出的算法用于实际的图像序列,取得了满意的超分辨率效果。
The proposed algorithms are applied in synthetic and real image sequences, and the experimental results are prospective and satisfied.
图像超分辨率复原的目的是从一个低分辨率图像序列中提取一幅高分辨率图像。
The goal of Super-resolution restoration is to draw a high-resolution image from a low-resolution ratio image array.
提出一种实时帧迭代反向投影算法实现对图像序列的超分辨率处理。
A real-time frame iterative back-projection algorithm for image sequences superresolution is proposed.
通过迭代求解法和高斯金字塔模型,快速精确地估计得到配准参数,采用凸集投影(POCS)算法对图像序列进行了超分辨率重建。
Based on the set theoretic formulation, a projection onto convex sets (POCS) algorithm is applied to find the solution to face image reconstruction.
压缩视频超 分辨率(SR)技术是利用 压缩后的低分辨率(LR)图像序列来 重建高分辨率(HR)图像的技术,是当前 视频超分辨率技术研究的热点。
Compressed video Super-resolution(SR)technique estimates High-resolution(HR)images from a sequence of Low-resolution(LR)observations, it has been a great focus for video Super-resolution.
压缩视频超 分辨率(SR)技术是利用 压缩后的低分辨率(LR)图像序列来 重建高分辨率(HR)图像的技术,是当前 视频超分辨率技术研究的热点。
Compressed video Super-resolution(SR)technique estimates High-resolution(HR)images from a sequence of Low-resolution(LR)observations, it has been a great focus for video Super-resolution.
应用推荐