刻划了S-正则半群上的极大幂等元分离同余并给每个S-正则半群一个基本表示。
The maximum idempotent - separating congruence on a S - semigroup is characterized and a fundamental representation of a such semigroup is given.
左半正规纯正半群是幂等元集形成左半正规带的纯正半群。
A left seminormal orthodox semigroup is an orthodox semigroup whose idempotents form a left seminormal band.
本文证明了纯正么半群在其幂等元带上的局部化存在唯一,且证明了它是其最大群同态象。
This paper proves that the localization of an orthodox semigroup at the semilattice of idempotences exists and is unique which is the maximum group homomorphism image.
正则半群上的同余是由其幂等元同余类所完全决定的。
The congruences on a regular semigroup is completely determined by its idempotent congruence classes.
由此推出了P -正则半群上的每个P -同余完全是由其包含幂等元的部分核正规系所决定的。
So We have prove that each P-congruence on P-regular semigroups is uniquely determined by its partial kernel normal systems containing idempotent elements.
介绍弱左正则幺半群的概念,指出在可交换半群中,完全正则、弱左(右)正则和完全幂等是等价的。
In this paper, we introduce the notion of left weakly regular semigroup and show that in a commutative semigroup, the complete regularity, regularity, left resp.
给出了布尔群代数半群中的幂等元、极大子群和正则元的结构以及幂等元和正则元的个数。
The structure of the idempotent elements, regular elements and maximal subgroups and the number of the idempotent elements and regular elements in Boolean group algebra are given.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
刻画了弱逆半群s上的最大幂等元分离同余和最小群同余。
In this paper, the greatest idempotent separating congruence and the minimum group congruence on a weakly inverse semigroup s are characterized.
刻画了弱逆半群s上的最大幂等元分离同余和最小群同余。
In this paper, the greatest idempotent separating congruence and the minimum group congruence on a weakly inverse semigroup s are characterized.
应用推荐