用边界元方法求解平面拉普拉斯方程时必须计算两个矩阵。
Two matrices have to be calculated when solving plane Laplace equation by the use of BEM.
本文推导出了该单元的拉普拉斯方程、泊松方程和波动方程的单元特征式。
The ring unit characteristic equations in relation to Laplace 's, Poissou 's and Helmholtz 's equa. tions are derived.
每一个时间步长,用有限元方法解二维的拉普拉斯方程,求出箔上的电势分布。
For every time step, the two dimensional Laplace's equation is solved by a finite-element method, so the potential distribution over the foil is given.
本文研究了如何从加权残数法出发建立拉普拉斯方程数值流形方法的求解方程。
The numerical manifold method of Laplace equation was presented, it was also more general than the minimum potential energy principle to obtain the governing equations of the NMM.
本文研究了如何从加权残数法出发建立拉普拉斯方程数值流形方法的求解方程。
So we should implement the method of weighted residuals to derive the governing equations of the NMM.
研究电极的位移形变所产生的误差时 ,需要在不规则边界条件下求解拉普拉斯方程 。
With the thought of "perturbation", this paper analyes the solution of Laplace equation for poles having irregular boundary.
通过求解带缝的长直圆柱面电容器中的电势的拉普拉斯方程,讨论该电容器的电容计算公式。
The capacitance formulae of a long cylindrical surface sensor with a gap are discussed by solving electric potential Lapalace's equation of the sensor.
本文通过有限元法求解用流函数表示的拉普拉斯方程,进而计算轴流式机组的静态轴向水推力。
In this thesis, the Finite Element Method is applied to the solution of the Laplace equation formulated by means of stream function for the calculation of the static hydraulic thrust.
使用边界积分方法求解已知第二类边界条件的拉普拉斯方程或泊松方程时,理论上解是不唯一的。
Theoretically the numerical solution of Poisson's equation or Laplace's equation plus Neumann boundary condition calculated by the boundary integration method is not unique.
将改写后的无旋条件与连续方程联立求解,可在计算面上将叶型设计问题用标准拉普拉斯方程来表示。
The equations of continuity and quasi irrotationality are transformed into the potential stream function coordinates. Then a Laplace equation can be deduced for an aerodynamic parameter "q".
本文用有限的二重傅里叶变换解波动方程,热传导方程,拉普拉斯方程以及泊松方程的非齐次边值问题。
In this paper, the finite double Fourier transforms were applied to solve the nonhomogeneous boundary value problems of the wave, heat conduction, Laplace and Poisson equations.
在矩形网格上的九点差分近似的正确公式。使用它,在均质情况下,对拉普拉斯方程、布阿松方程和热传导方程可以构造出高阶精度的差分近似。
Under homogeneous conditions, the application of this equation may give a differential approximation of high order accuracy for Lapace equation, Poisson equation and heat conduction equation.
结果表明:该法以求解拉普拉斯方程组为基础,物理概念明确,且无需构造“合并”或“聚集”控制函数,使得方程离散简单,经验性因素降低;
The method is clear in physical concept, and it is unnecessary to construct special controlling functions, hence the method makes the grid generation easier and also reduces some empirical influences.
在总结现有图像彩色化方法的基础上,分析了彩色化由局部向全局扩展的本质,进而提出了一种通过求解拉普拉斯方程实现颜色扩展的彩色化方法。
In this paper, current colorization algorithms are summarized and the principle of color propagation is analyzed. Then a colorization algorithm based on Laplace equation is proposed.
当介质的导热系数是温度的函数时,热传导方程是非线性偏微分方程,作者采用基尔霍夫变换把它变成拉普拉斯方程,于是可以找到原问题的近似解析解。
The nonlinear equation of heat conduction is transformed into a Laplace's equation by applying the Kirchhoff transformation, and an analytic approximate solution of the equation is derived.
本文提供了一种算法,对某些初始条件,只需计算其高阶拉普拉斯算子,就可以得到方程的显解。
For certain initial conditions, we need only calculate their high order Laplace operator, then we can obtain the accurate solution of the initial value problem.
用拉普拉斯变换用MATLAB求解二阶电路微分方程验证了得到的各元件参数。
Secondly, solving differential equation in LAPLACE transformation with MATLAB validates the acquired parameters.
本文应用拉普拉斯变换,求出了一个波动方程第二边界条件的混合问题的解。
In this paper, Laplace transform is applied to solve a solution of mixed question which satisfies the second boundry condition of the wave equation.
在考虑瞬态过程中动量扩散速度基础上,用拉普拉斯变换法对无限长平板突然起动瞬态动量定解方程进行了求解,并按涡量定义求出涡量分布函数。
Based on the limited momentum propagation velocity, this paper presents the solution of the transient momentum equation by Laplace transform. The distribution functions of velocity and eddy are given.
本文根据水下航行体的侧-滚运动方程组,经拉普拉斯变换,求解了运动参数的传递函数;
This paper solves side-roll equation of a submersible to give the transfer function of maneuvering motion parameters by means of Laplace'S transform.
应用形式渐近分析和拉普拉斯变换,我们从三维线性粘弹性方程组得到二维线性粘弹性弯壳的数学模型。
By applying formal asymptotic analysis and Laplace transformation, we obtain two-dimensional model system of linearly viscoelastic "flexural" shell from three-dimensional equations.
用拉普拉斯变换式对微分方程进行变换,把输出和输入联系起来,得到脉冲响应与系统输入输出之间的对等关系。
Laplace transform is used to combine output and input, then the impulse response and equivalent operations of system input and output are gained.
首先通过更新论证的方法得到罚金折现期望满足的积分-微分方程,然后推导拉普拉斯变换的表达式,并就索赔额服从指数分布的情形得到了罚金折现期望的精确表达式。
At first, we get the integro-differential equation satisfied by the expected discounted penalty function by using the method of renewal, and hence Laplace transform of it is derived.
建立了对拉普拉斯偏微分方程求解的混合并行算法,并在HL - 2 A高性能计算系统上同纯mpi算法作了性能方面的比较。
Designed a hybrid parallel algorithm of Laplace's equation, and compared its performance with pure MPI algorithm on the HL-2A high performance computing system.
本文将奇异函数与拉普拉斯变换方法相结合,用这种方法来计算阶梯梁的弯曲变形,可以方便地求得梁的挠曲线方程。
The singular function is combined with Laplace 's transformation to calculate the deflection of stepwise beam. In this way the deflection equation of the beam is conveniently determined.
考虑到掺质和尺寸效应,得到了金刚石烧结体系中拉普拉斯第二定律的一个普适性方程和相应的界面结合特征方程。
In consideration of the doping and dimension effects a universal equation of Laplace second law and the interface binding characteristic equation in the sintering system of diamond were obtained.
上海地面沉降是通过一维基本固结方程和拉普拉斯变换进行计算的。
Computations of land subsidence in Shanghai are carried out by employing the basic one-dimensional consolidation equation and the Laplace transformation.
上海地面沉降是通过一维基本固结方程和拉普拉斯变换进行计算的。
Computations of land subsidence in Shanghai are carried out by employing the basic one-dimensional consolidation equation and the Laplace transformation.
应用推荐