论文介绍了基于核空间的ICA的原理和基本算法,然后介绍了该算法与典型ICA和主成分分析(PCA)在盲源信号分离中的比较。
In this paper, kernel independent component analysis (KICA) 's principle and algorithm are introduced, and then the KICA comparison with some other ICA and principal component analysis (PCA) is given.
基于OR L人脸库,识别核主成分分析提取出的主成分的相关性系数。
Based on ORL face database, recognizes correlation coefficients of principal component extracted by KPCA.
本文的主要工作是将支持向量机(SVM)及核主成分分析(KPCA)应用到入侵检测技术中。
The dissertation mainly aims at applying support vector machine (SVM) and kernel principal component analysis (KPCA) to intrusion detection.
本文的主要工作是将支持向量机(SVM)及核主成分分析(KPCA)应用到入侵检测技术中。
The dissertation mainly aims at applying support vector machine (SVM) and kernel principal component analysis (KPCA) to intrusion detection.
应用推荐