引入了平衡矩阵的奇异值分解(SVD)方法并解释了其力学含义。
The Singular Value Decomposition (SVD) method for the equilibrium matrix is developed and a physical explanation is given.
利用矩阵的奇异值分解和矩阵分块方法,得到了最小二乘解的一般表达式。
By using the method of matrix singular values decomposition, the general expressions of the least squares solutions are given.
用矩阵的奇异值分解和广义逆讨论标准线性规划问题解的存在性和唯一性问题。
Apply singular value decomposition and generalize inverse of the matrix to discuss the existence and uniqueness of the solution of the standard linear programming problem.
讨论了矩阵乘积ab与BA的特征值、特征向量及秩等的关系,并得到了矩阵的奇异值分解。
The relationship between the eigenvalue, eigenvector and the rank of the product of matrices AB and BA is discussed, and the factorization of the singular values of matrix a is obtained.
采用矩阵的奇异值分解原理,对曲面最佳适配的灵敏度矩阵进行分解,得到不确定度参数与测点随机误差的关系表达式。
The sensitivity matrix was then decomposed by singular value decomposition (SVD) method, and the relationship between the surface geometric errors and the uncertainty parameters was formulated.
该方法首先对地球物理和地球化学等网格数据进行二维矩阵的奇异值分解,之后用左特征向量矩阵与右特征向量矩阵的直积构造一个正交完备基。
The MSVD method constructs a self-contained orthogonal basis using the outer product of left and right eigenvector matrixes decomposed from 2D geochemical or geophysical maps.
通过对图像进行奇异值分解,将一幅图像转换成只包含几个非零值的奇异值矩阵,实现图像压缩。
Digital image is transformed into singular value matrix that contains non-zero singular values by singular value decomposition (SVD), the image is compressed.
并利用奇异值分解方法和模矩阵的性质,给出了使不确定广义系统鲁棒稳定的一个鲁棒界。
A robust stability boundary of uncertain singular systems is proposed by utilizing singular value decomposition and the character of mode matrix.
在地震波阻抗反演中,其反演矩阵多为接近奇异的大型矩阵,不能用一般方法直接求解,而要用奇异值分解(SVD)方法解方程。
In seismic inversion, the inverse matrix is mostly huge singular, the ordinary methods cannot be directly used to solve the equation, and the SVD technique must be used.
本文以对观测数据矩阵直接进行奇异值分解为基础提出了一种正弦检测的新方法。
A new method for sinusoidal detection is presented based on the SVD of the observation data matrix.
本文使用奇异值分解法求解矩阵方程的最小二乘解。
A least squares solution via singular value decomposition is used to solve the matrix equation.
结果表明,在设计矩阵高度共线性时,用奇异值分解的迭代加细可以改进回归系数的估计。
Results show that iterative refinement using the SVD can improve regression coefficient estimates in the cases where the design matrix is highly collinear.
奇异值分解是将一矩阵分解为一个对角矩阵和两个正交矩阵,奇异值分解有着非常好的性质。
By decomposing a matrix into one diagonalizable matrix and two orthogonal matrixes, singular value decomposition has very good properties.
给出了一种基于矩阵奇异值分解(SVD)和奇异值量化的信息隐藏算法。
An algorithm based on singular value decomposition (SVD) is proposed, which hides secret information in singular value vector.
主要介绍了一种典型的信噪比估计算法,并对信噪比的自相关矩阵奇异值分解估计法进行了研究。
This paper introduces a typical SNR estimation algorithm by the use of autocorrelation matrix singular value decomposition method.
在获得正确的射影深度后,通过奇异值分解将测量矩阵分解为射影空间下的摄像机运动和物体三维几何形状(射影重构)。
After obtaining correct projective depths, we decompose the measurement matrix into camera motion in projective space and projective reconstruction by SVD.
介绍了基于动态系统可观测性矩阵奇异值分解的状态变量可观测度的分析方法。
The method of analyzing the observable degree of the state variable has been introduced by means of the singular value decomposition (SVD) of the observable matrix of a dynamic system.
对应特征点的三维重建是根据三角测量的方法计算其投影矩阵,然后用奇异值分解求出特征点的三维齐次坐标。
Feature points' 3d coordinates are computed through singular value decomposition of projector matrix, then compute projector matrix by triangulation.
对应特征点的三维重建是根据三角测量的方法计算其投影矩阵,然后用奇异值分解求出特征点的三维齐次坐标。
Feature points' 3d coordinates are computed through singular value decomposition of projector matrix, then compute projector matrix by triangulation.
应用推荐