提供一种基于有限差分格式的数值方法为美式看跌期权定价。
Based on the differential scheme, presents a numerical method of pricing for American put options.
美式看跌期权定价和波动率估计是期权定价理论中的两个重要问题。
The pricing problem of the American Put option and volatility estimate are currently studied as two of the important items in the option pricing theory.
在数值实验中,对六个美式看跌期权价格进行了计算,通过分析比较,结果表明:快速傅里叶变换法加欧拉法是一种快速的高精度的数值计算方法。
By valuing six American put options, the numerical experiment and analysis show that the Euler method with FFT is a fast and highly accurate numerical method.
美式期权的路径依赖特征导致了其定价的复杂性,并使得美式看涨、看跌期权之间的定价原理差异较大。
The path-dependent characteristic of American option results in it's pricing complexity and causes the pricing differences from American call option and put option.
本论文在第一章中首先介绍了期权、看涨期权、看跌期权、美式期权和欧式期权的概念,然后在此基础上引入了障碍期权的概念。
In the first chapter, the paper first introduced the definition of option, call option, American option, Europe option and then introduce the definition of barrier option.
本论文在第一章中首先介绍了期权、看涨期权、看跌期权、美式期权和欧式期权的概念,然后在此基础上引入了障碍期权的概念。
In the first chapter, the paper first introduced the definition of option, call option, American option, Europe option and then introduce the definition of barrier option.
应用推荐