It is often bilinear form for those integrable systems.
对于其中的可积系统,往往是双线性形式。
The nonlinear system as linear system in form is composed of multiplicative control and additive control items in bilinear system using coordinate transformations.
使用坐标变换,将双线性系统中的倍增控制项和叠加控制项重新组合成与线性系统有相同形式的非线性系统。
In this paper, we use the theory of symmetric bilinear function to solve problems of quadratic form, and finally give a proof of the inertia theorem.
通过建立二次型与对称双线性函数之间的对应关系,在双线性函数的概念下讨论二次型化标准型的问题,最后给出惯性定理的一个证明。
In space discretization, a piecewise bilinear interpolation is used. THe integrals over patches are carried out analytically in closed form.
采用分片双线性插值的空间离散方案,经解析处理,子域上的积分能得到闭式结果。
At first we give the energy norm and L_2-norm estimates of anisotropic bilinear finite element, then we prove the estimates of semidiscrete form and fulldicrete form of linear parabolic problem.
并用此单元求解线性抛物型方程,给出半离散格式和全离散格式的误差估计。
At first we give the energy norm and L_2-norm estimates of anisotropic bilinear finite element, then we prove the estimates of semidiscrete form and fulldicrete form of linear parabolic problem.
并用此单元求解线性抛物型方程,给出半离散格式和全离散格式的误差估计。
应用推荐