The micro shear stress sensor which based on the smart skin for boundary-layer separation point detection of delta wing has been explored in this paper.
本文就以用于实现三角翼边界层分离点检测的面向灵巧蒙皮的微型剪应力传感器为对象展开研究。
The basic equations of the boundary layer for blade surface flow of arbitrary cyclical surface are established, and the rotating effect for boundary layer separation is analyzed.
建立任意廻转面叶片表面边界层基本方程组,分析边界层分离的旋转效应。
If the reference separation point approaches the outlet, the test results are satisfactory, which state that the practical position of boundary layer separation point will be close to the outlet.
若分离参考点接近于出口端,则可获得满意的测试结果,这说明边界层实际分离点的位置已经很接近于叶片的出口端。
The theoretical analysis and experimental results show that boundary layer separation will produce pressure drag.
理论分析和实验的结果说明:边界层分离将引起压差阻力。
This design proposal of micro pressure sensor array can effectively meeting the measuring requirement of boundary - layer separation point, and expand engineering applied scope of MEMS devices.
设计的微型压力传感器阵列可有效满足边界层分离点的检测要求,进一步拓展了MEMS器件的工程应用范围。
The boundary layer separation points, minimum pressure positions on the surface and the drag coefficients are in agreement with numerical solutions and experimental results.
边界层分离点、物面最小压力点及阻力系数的计算结果与一些数值解及实验结果是符合的。
According to the analysis on the boundary layer separation condition, parameter equation of vane curve for centrifugal pump is established.
通过对压力面边界层分离条件的分析得出叶片型线方程并给出计算实例。
The technology of oil flow and silk thread can reflect effect of the vertex generators controlling the boundary layer separation of the wing truly.
油流和丝线流动显示技术可真实反映涡流发生器对机翼附面层分离的控制效果。
The introduction of micro pressure sensor array expands ways detecting boundary layer separation point.
微型压力传感器阵列的引入,拓宽了边界层分离点检测的解决途径。
Micro-shear stress sensor plays an important role in detecting separation point of the boundary layer due to small-scale structures and the desired spatial and temporal resolution.
微型剪应力传感器以尺寸小、时空分辨率高的特点在边界层分离点测量中表现出了突出的优势。
Finally recent studies of turbulent boundary layer separation are also briefly reviewed.
最后简单介绍了目前在研究湍流边界层分离方面的进展。
Based on linear wave making resistance theory and on & technique of boundary layer separation control, the present paper gives an optimized study of hull form below the design water line.
本文基于线性兴波阻力理论,把控制尾流分离作为约束条件,利用优化计算方法对设计水线下船体外形进行优化研究。
It has been confirmed by experiments that the boundary layer suction can efficiently eliminate the separation due to interaction of a reflected shock wave with the wall boundary layer.
实验证实了边界层抽吸可以有效地减小激波与壁面边界层相互作用所产生的分离现象。
The experiment shows that by changing the velocity coefficient , the separation of boundary layer on pump vane can be controlled, and the performance of pump is improved and its hydraulic efficiency.
实验证明通过改变叶片型线参数方程中的速度系数的取值,可以控制边界层的分离,进而改善泵的性能,提高其水力效率。
The separation flow is three dimensional in hydraulic machine. The pressure gradient in cross direction produces secondary flow in boundary layer.
水力机械的分离为三维流动,三维流动的侧向压力梯度产生边界层的二次流动。
The choice of vane curve should satisfy the conditions of boundary layer non-separation and theoretical distance head by Eular equation-the basic equation of pumps.
叶片型线的选择应满足边界层不分离条件及由欧拉方程——泵的基本方程所确定的理论扬程条件。
The control of supercritical airfoil boundary layer separation is adapted using micro-vortex generators.
超临界翼型附面层分离控制适合采用微型涡流发生器。
The main reason is that the injection changes the local separation characteristics and boundary layer structures.
二是改变了当地的附面层结构,而附面层特性的改变是主要的影响。
A 3d integral boundary layer approach is used and coupled with streamline method for determining vortex-layer-type flow separation.
本文利用三维积分边界层法并结合流线法决定涡层型流动分离。
Endwall transverse movement has greater influence on flow separation structure in corner region than separated suction side boundary layer.
端壁横向流动对角区流动分离结构的影响大于吸力面附面层的分离。
The negative bowed blades raise the endwall loading and emphasis the boundary layer separation.
叶片反弯增加了端区叶片的负荷,加重了附面层的分离。
The high of vortex generators have their best chord position with an outstanding effect on controlling boundary layer separation.
涡流发生器弦向位置对附面层分离控制效果影响显著,不同高度涡流发生器均有其最佳气动效率的弦向位置。
The result showed that for the cascade with larger separation, perfect effects can be obtained by applying boundary layer suction on the end-wall near suction surface.
结果表明:对于大分离叶栅,在靠近吸力面的端壁上进行附面层抽吸可以获得最佳效果。
The result showed that for the cascade with larger separation, perfect effects can be obtained by applying boundary layer suction on the end-wall near suction surface.
结果表明:对于大分离叶栅,在靠近吸力面的端壁上进行附面层抽吸可以获得最佳效果。
应用推荐