• In this paper we investigate the convex set in a plane of constant curvature.

    本文研究曲率平面,研究常曲平面上凸集方法。

    youdao

  • As a particular case, the similar problem in quasi-constant curvature manifold is also taken into consideration.

    同时,做为特例,考虑了拟常曲率流形中的类似问题

    youdao

  • Then they focus on a projectively flat Finsler spaces, find a sufficient condition for it to be of constant curvature.

    文章半部分探讨了射影平坦斯勒空间,得到成为曲率空间一个条件

    youdao

  • Based on this foundation, basic models of plow-bottom surface are ruled surface and negative constant curvature surface.

    据此得出直纹曲率两类曲面可作为体曲面基本模型

    youdao

  • The compact submanifolds in quasi constant curvature Riemannian manifolds with Parallel Mean Curature Vector were studied.

    研究曲率黎曼流形具有平行平均曲率向量的紧致子流形。

    youdao

  • We study the submanifolds with parallel mean curvature vector in a manifold of quasi constant curvature, and give two integrate inequalities.

    研究曲率流形中具有平行平均曲率向量流形给出两个积分不等式。

    youdao

  • Numerical results of typical problems show that it passes the constant curvature patch test and possesses stable convergence and high accuracy.

    数值结果表明单元能通过曲率分片试验收敛稳定具有较好的精度。

    youdao

  • Some estimates of Gaussian curvature of conformal metric of mini mal surfaces immerse in the manifold of quasi-constant curvature were obtained.

    给出了拟常曲率流形极小曲面度量高斯曲率之上界估计

    youdao

  • The work makes the study of compact submanifolds in quasi constant curvature Riemannian manifolds extend from the especial case to general case.

    使得曲率黎曼流形致子流形研究极小子流形和伪脐子流形情形扩展具有平行平均曲率向量的情形。

    youdao

  • Two non—linear evolution equations are derived from the surfaces of negative constant Curvature, and equivalent transformations among solutions of these equations are given.

    曲率曲面导出了两个非线性演化方程给出这些方程之间等价变换

    youdao

  • Some estimates of Gaussian curvature of conformal metric of 2-dimensional minimal submanifold immerged in 2 + p-dimensional manifold of quasi-constant curvature were obtained.

    给出了拟常曲率流形二维小子流形度量高斯曲率之上界估计

    youdao

  • Sufficient conditions for a simply-connected domain of 2-dimensional minimal submanifold immerged in 2 + p-dimensional manifold of quasi-constant curvature to be stable were proved.

    证明了拟常曲率流形中二维极小子流形一个单连通区域为稳定充分条件

    youdao

  • At last the complete hypersurface with constant mean curvature in the quasi constant curvature space is investigated, some characterization of totally umbilical hypersurfaces are obtained.

    最后研究平均曲率完备曲面,得到了类超曲面全一个结果

    youdao

  • This paper studies the Schouten tensor on the locally conformally flat manifold, and gets some sufficient conditions for m to be the space of constant curvature, which improves the known results.

    局部对称共形平坦黎曼流形中具有平坦法丛极小子流形作了一些讨论,得到了极小子流形全测地的两个充分条件

    youdao

  • Einstein manifold is a particular kind of Riemannian manifold, it has good characters, its definition is weaker than Riemannian manifold with constant sectional curvature.

    爱因斯坦流形特殊黎曼流形,很好的特征定义曲率黎曼流形。

    youdao

  • The moment-curvature relationship chosen is assumed to have a horizontal branch beyond yield, with the moment remaining constant at the ultimate value.

    所选用弯矩-曲率关系假定超过屈服后有一个水平段,即弯矩保持极限值不变

    youdao

  • In this paper, the notion of stability of hypersurfaces with constant mean curvature was considered.

    介绍具有常数平均曲率超曲面的稳定性概念

    youdao

  • By using the method of boundary layer, it discusses the axis symmetry problems of the combines rotary shell when its first curvature is in constant.

    利用边界层方法讨论第一主曲率常数组合旋转轴对称问题

    youdao

  • In this paper, we get a necessary and sufficient condition for a generalcodimensional submanifold with constant mean curvature in a Riemannian mani-fold to be a totally umbilical submanifold.

    本文讨论黎曼流形里一般余维的常数平均曲率的子流形为全子流形的充要条件

    youdao

  • This paper discusses the space-like submanifolds with constant mean curvature in a pseudo-Riemannian space form, and obtain an integrate inequality and a rigidity theorem.

    本文研究了伪黎曼空间型中具有平均曲率空子流形得到了这类空子流形的一个积分不等式刚性定理。

    youdao

  • The paper discusses on the hypersurfaces in locally symmetric manifolds with constant scalar curvature and gets a pinching theorem which improves the known results.

    研究局部对称空间具有数量曲率的紧致超曲面,给出这类超曲面的一个拼挤定理改进了相关作者的结论

    youdao

  • Study on hypersurface with constant mean curvature in sphere;

    介绍了具有常数平均曲率的曲面的稳定性概念。

    youdao

  • In this paper, the authors discuss the submanifolds with constant scalar curvature in a locally symmetric and conformally flat space, and obtain some intrinsic rigidity theorems.

    该文研究了局部对称形平坦空间具有数量曲率的紧致子流形,证明了类子流形的某些内蕴刚性定理。

    youdao

  • The result is extended in CHENG (1977) and li (1996) to the space-like submanifolds with constant scalar curvature in an indefinite space form.

    我们把CHENG (1977),LI(1996)结果推广到了非空间形式中常数量曲率的类空子流形中

    youdao

  • Complete classification of affine spheres with constant cross section curvature in 4-dimensional affine space is given.

    本文给出了四仿空间具有截面曲率仿射完全分类

    youdao

  • Complete classification of affine spheres with constant cross section curvature in 4-dimensional affine space is given.

    本文给出了四仿空间具有截面曲率仿射完全分类

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定