There are two key problems in the field of EEG, EEG forward problem and EEG inverse problem.
脑电研究领域的两个关键问题是脑电正问题和脑电逆问题。
In this paper, based on the fourth-order cumulant matrix, a new sub-space decomposition algorithm is proposed for the EEG inverse problem.
基于四阶累积量矩阵的子空间分解,提出了一种新的脑电逆问题算法。
Inverse problem of EEG means using EEG data to get the information of equivalent dipole sources that can reflect the activity of EEG.
脑电逆问题是指利用脑电图(EEG)数据去反演可以反映脑电活动等效偶极子源的参数信息。
The study of electroencephalogram (EEG) includes forward solution of EEG and inverse problem of EEG.
脑电研究包括脑电正问题和脑电逆问题研究。
Using this improved arithmetic to solve the inverse problem of EEG, it runs faster and can avoid local optimization more availably than SGA.
为解决电磁场逆问题分析计算过度依赖计算机资源这一“瓶颈”问题,提出了一种新的快速全局优化算法。
Using this improved arithmetic to solve the inverse problem of EEG, it runs faster and can avoid local optimization more availably than SGA.
为解决电磁场逆问题分析计算过度依赖计算机资源这一“瓶颈”问题,提出了一种新的快速全局优化算法。
应用推荐