Based on the idea of curve fitting, the nonlinear least squares method (Gauss-Newton method) has been applied to estimate the complex parameters.
文中对用高斯·牛顿法拟合三参数和四参数极化曲线方程序求取电化学动力学参数提出了两种改进方法。
This paper proves that the quasilinearization method for parameter estimation of ordinary differential equation in chemical reaction kinetics essentially belongs to the region of Gauss-Newton method.
本文通过理论推导,证明在反应动力学常微分方程参数估值中所采用的拟线性化法在本质上仍然属于高斯—牛顿法的范畴。
An approximate Gauss Newton based BFGS method for solving symmetric nonlinear equations is presented.
给出一个解非线性对称方程组问题的近似高斯·牛顿基础bfgs方法。
An approximate Gauss Newton based BFGS method for solving symmetric nonlinear equations is presented.
给出一个解非线性对称方程组问题的近似高斯·牛顿基础bfgs方法。
应用推荐