This paper studies inverse design problem of generalized eigenvalue problem of linear parameter discrete vibration system.
本文研究了具有线性参数的离散振动系统广义特征值逆设计问题。
Parallel processing for generalized eigenvalue problem is one of the fundamental problem in computation science and engineering.
非对称矩阵广义特征值问题的并行计算是大规模工程计算中的基础问题之一。
After the equation is set up, using the standard finite element program and subspace iteration algorithm to solve the generalized eigenvalue problem.
方程建立后,使用标准的有限元程序,采用子空间迭代算法来求解广义特征值问题。
Massively parallel Processing system (MPP) and PC cluster provide distributed-memory environments for parallel solving the generalized eigenvalue problem.
大规模并行处理系统(MPP)和PC机群为并行求解矩阵广义特征值问题提供了分布式存储环境。
The boundary element method is applied to solve the three dimensional boundary value problem. The differential equations are transformed to a generalized eigenvalue problem to be solved.
运用边界元方法求解了重力场中部分充液偏置贮箱内液体晃动的三维边值问题,并将系统运动的联立微分方程组交换后化为广义特征值问题来求解。
The dynamic design of vibration system is considered as an inverse problem for nonlinear generalized eigenvalue in this paper.
振动系统动力学设计被抽象为高维广义非线性特征值反问题。
This includes normal and generalized inverse eigenvalue problem which includes the additive, multiplicative classical inverse eigenvalue problems as special cases.
包括常义特征值反问题和广义征值反问题,这类问题包括加法和乘法经典代数特征值反问题。
This includes normal and generalized inverse eigenvalue problem which includes the additive, multiplicative classical inverse eigenvalue problems as special cases.
包括常义特征值反问题和广义征值反问题,这类问题包括加法和乘法经典代数特征值反问题。
应用推荐