For a harmonic oscillator the energy levels are evenly spaced.
对谐振子来说,能级是等间隔的。
We can work out positions of a harmonic oscillator by numerical methods .
我们可以按数值方法计算简谐振子的位置。
The harmonic oscillator is an exceptionally important example of periodic motion.
谐振子在周期运动中是特别重要的。
An exact solution is presented for the problem of a harmonic oscillator with variable mass.
本文给出了变质量谐振子的精确解。
The Solution of Harmonic Oscillator with Electric Charge at Electric Field in Coordinate Basis;
本文简要分析了在坐标表象、动量表象、粒子数表象中一维谐振子的性质。
Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons.
基于谐振子模型的量子点能级,计算了包括和排除激子影响时多能级的增益谱。
The calculation method for the vibrational partition sums Qvib used is the harmonic oscillator approximation.
其中,转动配分函数考虑了离心扭曲修正,振动配分函数采用谐振子近似。
The formula of energy levels of two dimensional harmonic oscillator in the uniform magnetic field is derived.
推导出了三维各向同性谐振子在均匀磁场中的能级表达式并讨论了其最低能级及其简并度的变化。
The recurrence formula for radial martrix elements of two-dimensional isotropic harmonic oscillator are derived.
推导出二维各向同性谐振子径向矩阵元所满足的递推公式。
In Quantum Mechanics, the study of harmonic oscillator is very important in theoretic and in practical application.
在量子力学中,对谐振子的研究,无论在理论上还是在实践应用中都很重要。
The case of a harmonic oscillator driven by sinusoidally varying force is an extremely important one in many branches .
在许多领域中受正弦变化力策动的谐振子是一种十分重要的运动。
Deducing the uncertainty in energy of one dimensional harmonic oscillator equals zero, and average lifetime equals infinity.
推出一维谐振子的能级的能量不确定范围等于零,能级的平均寿命等于无穷大。
The method of the harmonic oscillator operator algebra has been used to study the two-dimensional polaron in a magnetic field.
谐振子算符的代数运算方法被用于研究磁场中同时与表面光学声子及表面声学声子相互作用的二维电子。
This is a most useful form of the harmonic oscillator Hamiltonian and it will be encountered in several subsequent developments.
这是谐振子哈密顿算符最有用的形式,在下文中还会碰到这个表达式。
Besides, author derived a correct expression of additional motional constant for the two dimensional isotropic harmonic oscillator.
此外,作者还给出了二维各向同性谐振子的附加运动常数的正确表达式。
Normal mode of coupled harmonic oscillator is obtained by means of algebra, the procedure is simple and the physical meaning is clear.
本文用代数的方法求出了耦合谐振子的简正模,过程简单且物理意义清晰。
This paper studies the causality and analyticity characteristics in harmonic oscillator, and from which drives Hilbert transform pair.
本文对谐振子的因果律和解析性质进行了研究,并由此推导出谐振子的希尔伯特变换对。
Relations between interband transitions and harmonic oscillator model, and between optical properties and dimensionality are discussed.
文中讨论了带间跃迁与振子模型,光学性质与维度性之间的物理联系。
The contents of this thesis are the following: 1 the spectra and the wave functions of 2d harmonic oscillator in non-commutative space.
主要内容如下:1、非对易空间(?)中二维谐振子的能谱及波函数的研究。
The third chapter introduces the harmonic oscillator model, normal mode vibration types and frequency characteristics of infrared spectra.
第三章介绍了红外光谱的谐振子模型、简正振动类型和频率特征。
Using the harmonic oscillator model of quasicrystal of liquid, the wave equation describing the motion of liquid molecules has been derived.
用液体的准晶态的谐振子模型,导出描述液体分子运动的波动方程。
The conditions for the production of amplitude-cubed squeezing in higher-order harmonic generation and an anharmonic oscillator are studied.
本文研究了高次谐波产生及非谐振子模型两种非线性光学系统中存在光场振幅立方压缩的条件。
Mesoscopic double resonance mutual inductance and capacitance coupling circuit is quantized by the method of harmonic oscillator quantization.
对介观互感电容耦合电路作双模耦合谐振子处理,将其量子化。
A simple method is used to calculate the phase volumes enclosed by energy surfaces of 2-dimensional harmonic oscillator and rigid diatomic molecule.
用初等方法计算了二维线性谐振子和刚性双原子分子两种情况的能量曲面所包围的相体积。
Mesoscopic double resonance circuit with complicated coupling is quantized by the method of harmonic oscillator quantization and linear transformation.
对介观复杂耦合电路作双模耦合谐振子处理,将其量子化。
The Schrodinger equation of time - dependent harmonic oscillator is solved by the time space transformation, and its application in physics is presented.
利用时空变换法求解含时谐振子的薛定谔方程,并对这类问题在物理上的应用作了说明。
Double wave function quantum theory is applied to describe the motion of three dimension isotropy charged harmonic oscillator in a uniform magnetic field.
讨论均匀磁场中三维各向同性带电谐振子的双波函数描述,得到量子和经典极限条件下的结果。
The completeness and higher-order squeezing properties of generalized odd and even coherent states of a Q-deformed non-harmonic oscillator are investigated.
给出了Q变形的非简谐振子广义奇偶相干态的完备性证明,并且研究了它们的高阶压缩特性。
Generalized coherent states of a non harmonic oscillator in a finite dimensional Hilbert space are constructed and some quantum statistical properties are studied.
在有限维希尔伯特空间中构造了非简谐振子的广义相干态,并研究了其量子统计特性。
Generalized coherent states of a non harmonic oscillator in a finite dimensional Hilbert space are constructed and some quantum statistical properties are studied.
在有限维希尔伯特空间中构造了非简谐振子的广义相干态,并研究了其量子统计特性。
应用推荐