We obtain an estimation about the Hausdorff dimension of self-affine sets.
本文给出了一类自仿集的维数估计式。
Methods The method of estimating invariant sets Hausdorff dimension of a finite collection of contraction maps was used.
方法利用压缩映射不变集的维数的估计方法。
In Chapter 4, we consider the Hausdorff dimension property of a class of fractals associated with some accumulation points.
第四章我们主要讨论了一类与空间中的聚点有关的分形集合豪斯道夫维数方面的性质。
In this paper, we discuss the calculation method of Hausdorff dimension and box dimension for several special self-similar sets and obtain the corresponding results.
本文主要探讨几个特殊自相似集的豪斯道夫维数与盒维数的计算方法。
The self-similar measure has been studied since 1930's, revealing connections with harmonic analysis, the theory of algebraic numbers, dynamical systems and Hausdorff dimension estimation.
自相似测度的研究可以追溯到上个世纪30年代,随着研究的深入,人们逐渐发现它与调和分析、代数数论、动力系统及维数的估计都有密切的联系。
The results have deminstrate that the Hausdorff fractal dimension is comparatively low and the space relation fractal dimension is high according to the ratio.
通过对比分析数值得出辽宁省干线公路网络的分维数比较低,网络直通度比较高的结论。
The results have deminstrate that the Hausdorff fractal dimension is comparatively low and the space relation fractal dimension is high according to the ratio.
通过对比分析数值得出辽宁省干线公路网络的分维数比较低,网络直通度比较高的结论。
应用推荐