And we can calculate the ionization energy.
我们能够计算电离能。
So, we can now calculate the ionization energy here.
我们可以计算这的电离能。
So, oftentimes you'll just be asked about ionization energy.
经常你们会被问到关于电离能。
Yeah. OK. We're looking for the lowest ionization energy.
对,好,我们再找最低的电离能。
That is to say the ionization energy of the second most electron.
这是二级电离能,这就是说,电子数第二多的电离能。
We will never have a case where ionization energy is negative.
我们绝不会见到一个,电离能是负值的情况。
So, we keep the atoms with the lowest ionization energy in the center.
因此,我们把电离能,最低的原子放在中间。
Let's take a look at the lowest ionization energy in the center case.
让我们来看一下电离能最低在中间的情况。
As we go down a column, what happens is that the ionization energy decreases.
当我们沿着列向下走的时候,会发现电离能是在降低的。
So, in terms of ionization energy, we would expect to see sulfur in the middle.
因此,按照电离能,我们应该把硫放在中间。
So, this is first ionization energy, let's think about second ionization energy.
那么,这就是第一电离能,下面让我们来想一想第二电离能。
The ionization energy, of course, is just the negative of the binding energy.
电离能,我们知道也就是,负的结合能。
The first ionization energy of lithium is about 5.4 electron volts per atom.
锂的一级电离能,大约是每原子5。4电子伏。
So if we want to solve for ionization energy, we can just rearrange this equation.
因此,要想解出电离能,我们只需要将这个方程中的项变换一下位置。
So, thinking about ionization energy, which atom would you put in the middle here?
那么,从电离能的角度考虑,大家会把哪个原子放在中间?
We know that binding energy is always negative, ionization energy is always positive.
我们知道结合能,总是负的,电离能总是正的。
Same sort of subtraction problem, what do we have for the ionization energy of the 2 s electron?
进行类似的减法运算,得到的,2,s,电子的电离能应该是多大呢?
So it's going to keep in mind the limitations, so let's start off with talking about ionization energy.
那么让我们将这些局限性记在心里,继续来讨论一下电离能。
We would expect the ionization energy to decrease, that means that sulfur has our lowest ionization energy.
我们预期电离能会降低,这就意味着硫的电离能最低。
Well, if we look on the chart, the first ionization energy is what is reported in your Periodic Table.
如果我们查阅图表,一级电离能,已经在元素周期表上标示了。
In Gaseous state, Numerical Value of Ionization energy measure difficult and easy of metal atom lose electron.
在气相中,金属原子失去电子的难易用电离势数值大小来衡量。
In this case, it's called the ionization energy, plus whatever kinetic energy we have left over in the electron.
在这种情况下,它就是电离能,剩余部分将转化为,出射电子的动能。
Moreover, we also deduced their correspondent values of lattice relaxation energy and optical ionization energy.
并求得它们对应的束缚能,晶格驰豫能和光离化能。
But, in fact, we can also talk about the ionization energy of different states of the hydrogen atom or of any atom.
但实际上我们也可以讨论氢原子,或者其它任何原子的其它能级的电离能。
Our ionization energy is going to be equal to the incident energy coming in, minus the kinetic energy of the electron.
我们的电离能将等于,入射能量,减去电子的动能。
If something has a high ionization energy, it means that it really, really, really does not want to give up an electron.
如果某个东西有很高的电离能,这意味着它非常非常,非常不愿意失去一个电子。
Ionization potential (ionization energy) : Amount of energy required to remove an electron from an isolated atom or molecule.
电离电势(亦称电离能):从孤立原子或分子中移去一个电子所需要的能量。
So we should be able to calculate a z effective for any atom that we want to talk about, as long as we know what that ionization energy is.
我们应该可以计算出任何一个,我们想要谈论的原子的有效电荷量,只要我们知道电离能是多少。
What we've learned so far is as a first approximation, what we want to do is put the atom with the lowest ionization energy in the middle here.
我们之前所学的可以作为第一近似,我们要做的是把电离能,最低的原子放在中间。
So, what we can do instead of talking about the ionization energy, z because that's one of our known quantities, so that we can find z effective.
我们做的事可以代替讨论电离能,因为那是我们知道的量子数之一,那是我们可以解出有效的,如果我们重新排列这个方程。
应用推荐