This paper investigates the segmentation of multi-target image based on SVM approach combining feature extraction of kernel PCA.
实验结果表明,结合核主成份分析的特征提取,支持向量机方法是一种很有前景的多目标图像分割技术。
In this paper, kernel independent component analysis (KICA) 's principle and algorithm are introduced, and then the KICA comparison with some other ICA and principal component analysis (PCA) is given.
论文介绍了基于核空间的ICA的原理和基本算法,然后介绍了该算法与典型ICA和主成分分析(PCA)在盲源信号分离中的比较。
In this paper, kernel independent component analysis (KICA) 's principle and algorithm are introduced, and then the KICA comparison with some other ICA and principal component analysis (PCA) is given.
论文介绍了基于核空间的ICA的原理和基本算法,然后介绍了该算法与典型ICA和主成分分析(PCA)在盲源信号分离中的比较。
应用推荐