Linear equation sets as basic computational unit, expressing linear equation sets in matrix form, basic matrix operations.
做为基本计算单元之线性方程组,以矩阵形式表示线性方程组,基础矩阵运算。
By elementary rank transformations of matrix, a method has been obtained to solve linear diophantine equation with some variables. The method overcomes the deficiency of traditional method.
利用矩阵的初等列变换,给出了求解多元线性不定方程的一种方法,该方法改进了传统方法计算量大、步骤多的缺点。
A common ground was found: to linearize the matrix of a? B in the state equation in different ways and seek for the optional control laws through linear optimal control theory.
发现它们有一个共同点就是如何把状态方程a、B矩阵线性化,再利用线性最优控制理论求出最优控制规律。
A upper bound with consistent matrix norm and the estimate for error of AOR iterative method for solving linear equation system, which based on the doubly diagonal dominance, are presented.
在双严格占优矩阵条件下,给出了相容矩阵范数的一个上界,并以此为基础,得到了线性方程组求解时的AOR迭代法的误差估计式。
This paper describes the relationship between the rank of matrix, the rank of vector group and liner equation group in the linear algebra.
讨论了线性代数中矩阵的秩、向量组的秩与线性方程组的秩之间的关系。
The new algorithm uses the quadratic conjugate gradient algorithm (QCGA) to solve the forward-backward linear prediction matrix equation.
本算法用自适应算法,二次型共轭梯度算法,解前后向预测构成的矩阵方程。
Section I describes the numerical solution of first order matrix linear differential equation using the cubic matrix spline function and quartic matrix spline function.
第一节介绍了三次矩阵样条函数方法和四次矩阵样条函数方法逼近一阶矩阵线性微分方程的数值解。
Section II describes the numerical solution of first-order matrix differential non-linear equation using the cubic matrix spline function.
第二节介绍用三次矩阵样条函数方法逼近一阶矩阵非线性微分方程的数值解。
A transfer matrix differential equation is derived from the three-dimensional equilibrium equations and constitutive equations of a homogeneous, isotropic linear elastic body.
从三维弹性力学最基本的平衡方程和本构关系出发,推导出状态传递微分方程。
A state transfer matrix differential equation was derived from the three-dimensional equilibrium equations and constitutive equations of a homogeneous, isotropic linear elastic body.
本文从三维弹性力学最基本的平衡方程和本构关系出发,推导出状态传递微分方程。
Generally, we choose some appropriate iteration methods to solve the large sparse matrix linear equation system to get the approximate solution of the PDE usually.
在求解大型线性方程组时,人们经常选用合适的迭代方法求其近似解。
Generally, we choose some appropriate iteration methods to solve the large sparse matrix linear equation system to get the approximate solution of the PDE usually.
在求解大型线性方程组时,人们经常选用合适的迭代方法求其近似解。
应用推荐