On the other hand, the magnetohydrodynamics (MHD) is always the focus in electrochemistry.
另外,电化学中的磁流体动力学效应也一直是人们所关注的焦点。
As a non-ideal effect, magnetohydrodynamics is not considered in the stellar structure and evolution.
在恒星结构和演化模型中,磁流体动力学过程作为一个非理想效应并没有被考虑。
Lastly, a perpendicular, a parallel magnetohydrodynamics shock wave and aerodynamic shock wave are discussed.
最后,对垂直磁流体激波、平行磁流体激波以及气体动力学激波分别予以讨论。
Lastly, a perpendicular, a parallel magnetohydrodynamics shock wave and aerodynamic shock wave are discuss...
最后,对垂直磁流体激波、平行磁流体激波以及气体动力学激波分别予以讨论。
The structure of nozzle arc, thermal boundary region and gas flow is revealed through establishing magnetohydrodynamics (MHD) model.
建立的喷口电弧磁流体动力学(MHD)数学模型,揭示了喷口电弧、热边界区、外部气流场的组成结构。
Analytic Methods in Magnetohydrodynamics, Numerical Methods in Magnetohydrodynamics, Nonlinear Wave Propagation and Its Applications.
磁流体力学数值解析方法,磁流体力学数值模拟方法,非线性波传播及其应用。
By using magnetohydrodynamics, it may be explained that the asymmetry rotation of these asters is due to the asymmetry of magnetic brake.
利用磁流体力学理论,阐明这类星球自转的不均匀性,是磁制动的不均匀性引起的。
The subtle interactions between magnetohydrodynamics and high-frequency plasma waves involving transverse and longitudinal modes are investigated.
本文研究了磁流体力学与高频等离子体波(包括纵横模式)之间的精巧的相互作用。
This paper focuses on the application of hydrodynamics and magnetohydrodynamics to solar oscillations and accretion process and outflow in star formation.
本文着重讨论了流体和磁流体力学在日震学方面和恒星形成中吸积和外流这两方面的应用。
The jump equations of the magnetohydrodynamics shock wave are transformed to the dimensionless form, so that their solutions become very simple and straightforward.
本文通过对磁流体激波跃变方程组的无量纲化处理,得到了有关磁流体激波跃变条件及其解析解的一种普遍化的最简形式;
Two dimensional (2d) hypersonic magnetohydrodynamics (MHD) flows around a blunt body with chemical non-equilibrium effects are numerically simulated on unstructured meshes.
在非结构网格上对考虑化学非平衡效应的二维高超声速磁流体绕钝头体流动进行了数值模拟。
Magnetohydrodynamics equations with periodic boundary conditions are considered in this note. The time analyticity of the solutions for the equations is proved and the backward uniqueness is obtained.
考查了周期边界条件下的磁流体方程,证明了它的解关于时间是解析的,由此得到了磁流体方程的解的向后惟一性。
Magnetohydrodynamics equations with periodic boundary conditions are considered in this note. The time analyticity of the solutions for the equations is proved and the backward uniqueness is obtained.
考查了周期边界条件下的磁流体方程,证明了它的解关于时间是解析的,由此得到了磁流体方程的解的向后惟一性。
应用推荐