Using a powerful Matrix-geometric method, the stationary probability distribution for the system states is obtained.
通过使用强大的矩阵几何方法,可以获得平稳系统状态概率分布。
Method for computing the element restoring force, rather than the stiffness matrix, is the most important factor that determines the accuracy of a geometric nonlinear finite element problem.
几何非线性单元的精度主要决定于单元恢复力的计算方法,刚度矩阵对单元精度的影响很小。
In calculation, this method USES the same stiff matrix, and only to renew the load vectors, which means it will reflect the geometric nonlinear effect in the load vectors' iteration.
计算时该格式使用同一刚度矩阵,只需要不断更新荷载矢量,即在荷载矢量的迭代中反映几何非线性效应。
By using the matrix geometric solution method, we derive the explicit expressions for steady-state probability vector.
利用矩阵几何解的方法,导出了系统稳态概率向量的明显表达式。
The sensitivity matrix was then decomposed by singular value decomposition (SVD) method, and the relationship between the surface geometric errors and the uncertainty parameters was formulated.
采用矩阵的奇异值分解原理,对曲面最佳适配的灵敏度矩阵进行分解,得到不确定度参数与测点随机误差的关系表达式。
Using the quasi-birth-and-death process method, we derive the equilibrium condition of the system and the matrix-geometric solution of the steady-state probability vectors.
通过拟生灭过程的方法求出了系统稳态平衡条件和稳态概率向量的矩阵几何解,并给出了系统的一些性能指标和数值结果。
Using the quasi-birth-and-death process method, we derive the equilibrium condition of the system and the matrix-geometric solution of the steady-state probability vectors.
通过拟生灭过程的方法求出了系统稳态平衡条件和稳态概率向量的矩阵几何解,并给出了系统的一些性能指标和数值结果。
应用推荐