In molecular orbital theory, we named orbits based on their symmetry.
在分子轨道理论中,我们基于轨道的对称性给它们命名。
Recall the molecular orbital diagrams we created for diatomics back.
回想一下我们为双原子创建的分子轨道图。
Right, we had one from each atom, so that means we need a total of two in our molecular orbital.
对吧,每个原子有一个电子,这意味着在分子轨道里我们一共需要两个电子。
And this one here, because it is at a higher energy is called antibonding molecular orbital.
这里的这个,因为处在一个较高的能级,被叫做反键分子轨道能级。
It might not have any electrons in it, but it still exists, so you need to draw these into your molecular orbital diagram.
也许它里面没有电子,但它是存在的,所以你需要在分子轨道图里画出来。
So this is what we call our molecular orbital.
这就是我们所说的分子轨道。
So that lowered the energy of the molecular orbital.
所以降低了分子轨道的能量。
Today we're talking about molecular orbital theory.
今天我们要讲的是分子轨道理论。
So any time in a molecular orbital diagram you draw in orbitals, you need to draw the corresponding molecular orbitals.
任何时候你在分子轨道图里画轨道,你都要画出相对应的分子轨道。
So, molecular orbital theory, on the other hand, is based on quantum mechanics.
另一方面分子轨道理论,是基于量子力学的。
So, let's draw in our electrons there, so we have our two electrons now in the molecular orbital.
让我们把电子画在这里,我们现在有两个电子在分子轨道里。
So in molecular orbital theory, what we did was we named orbitals based on their symmetry.
在分子轨道理论中,我们基于轨道的对称性给它们命名。
And so this lower level is called a bonding orbital, and it is a bonding molecular orbital.
所以能级较低的轨道叫做成键轨道,这就是成键分子轨道。
And again, I want to point out that a molecular orbital, we can also call that a wave function, they're the same thing.
同样,我要指出的是,一个分子轨道,我们也可以叫它波函数,这是一件事情。
So, I think we have these molecular orbital energies down, so let's move on to talking about more complex molecules.
分子轨道能量就说到这里,让我们继续来讨论一下更复杂的分子。
It's the same thing with molecules a molecular wave function just means a molecular orbital.
这对于分子也是一样,分子波函数就意味着分子轨道。
So that's the idea of a bonding molecular orbital.
这就是成键分子轨道的概念。
And I am going to superscript it molecular orbital, and this upper one, to indicate that it's antibonding, has the asterisk.
我将给分子轨道加上标,这个上标,表示反键轨道,有一个星号。
So, if we look at the molecular orbital, that's actually going to be lower in energy than either of the two atomic orbitals.
如果我们看分子轨道的话,它实际上要比,两个原子轨道都要低。
So it's going to be favorable for the electrons instead to go to that lower energy state and be within the molecular orbital.
所以对于电子来说,更倾向于能量更低的轨道,呆在分子轨道里。
Pi orbitals are a molecular orbital that have a nodal plane through the bond axis.
轨道是沿着键轴,有节面的分子轨道。
So if we name this orbital, this is an anti-bonding molecular orbital So we had bonding and now we're talking about anti-bonding.
这是反键分子轨道,我们有了成键,现在我们讨论反键。
So this is going to be our molecular orbital diagram.
这就是分子轨道图。
So, in this case, we're just drawing the molecular orbital diagram for the valence electrons, so we have three for each.
所以在这个例子里面,我们只需要画出,价电子的分子轨道图,所以每个有3个电子。
And what I want to point out that we just figured out for molecular orbital theory, is that o 2 is a biradical, because remember, the definition of a radical is when we have an unpaired electron.
我要指出的是,我们刚利用分子轨道理论,指导了O2是二价自由基,因为记住,自由基的定义是,有个未配对的电子。
And this will be called pi of 2py molecular orbital.
我们会称它为2py分子轨道上的π键。
First of all, this is the two s orbitals in hydrogen, 1s plus 1s smearing to give us this sigma molecular orbital.
首先,这是氢气中的两个s轨道,1s与1s轨道重叠,产生sigma分子轨道。
The 1 s just comes from the fact that the molecular orbital is a combination of two 1 s atomic orbitals.
是因为分子轨道是两个,1s原子轨道的组合。
This is sigma star with the antibonding orbital that came from 1s, and it is a molecular orbital.
这是sigma星,来自于1s的反键轨道,它是一个分子轨道。
Sigma symmetry of this molecular orbital, specifically that it's cylindrically symmetric about the bond axis.
告诉我们关于,And,the,sigma,tells,us,something,about,the,分子轨道对称性的信息,特别是它关于键轴是圆柱对称的。
应用推荐