Kernel Canonical Correlation Analysis (KCCA) is a recently addressed supervised machine learning methods, which is a powerful approach of extracting nonlinear features.
针对该问题,采用核典型相关分析方法进行原始特征的二次提取,得到简约而重要的二次特征。
Kernel Canonical Correlation Analysis (KCCA) is a recently addressed supervised machine learning methods, which is a powerful approach of extracting nonlinear features.
针对该问题,采用核典型相关分析方法进行原始特征的二次提取,得到简约而重要的二次特征。
应用推荐