Successive approximation and least square collocation are used to find the solution of geometrically nonlinear bending problem of orthotropic rectangular plates.
用逐次逼近法和最小二乘配点法求正交异性矩形薄板弯曲的几何非线性解。
The nonlinear least square method and functional condition extremum model are introduced to describe the problems and numerical solution of them is proposed.
首先确定了自由度组合到指尖空间位置的映射,建立了求解上述问题的最小二乘模型、泛函条件极值模型,并给出了数值解法。
Firstly, the error of fit must be defined for nonlinear least-square fitting of generalized geometry model. Then the nonlinear optimization algorithm can be used to obtain the optimum solution.
对于一般几何模型的非线性最小均方误差拟合,首先必须定义拟合误差,然后采用非线性最优化方法求解最小误差意义下的最优解。
Firstly, the error of fit must be defined for nonlinear least-square fitting of generalized geometry model. Then the nonlinear optimization algorithm can be used to obtain the optimum solution.
对于一般几何模型的非线性最小均方误差拟合,首先必须定义拟合误差,然后采用非线性最优化方法求解最小误差意义下的最优解。
应用推荐