This paper defines totally nonsingular matrix and get its equivalent condition and some qualities.
本文定义了完全可逆矩阵,并给出它的一个等价条件及其一些性质。
An expression of the generalized eigenvector of adjoint matrices for nonsingular matrix a is derived.
给出了非奇异矩阵a的伴随的广义特征向量的表达式。
An expression of the generalized eigenvector of adjoint matrices for nonsingular matrix a is derived...
企司实业给出了非奇异矩阵a的伴随的广义特征向量的表达式。
Two conclusions drawled by schmidt's orthogonalization:(1) The QR decomposition theorem of nonsingular matrix;
从施密特正交化出发,得到了:(1)可逆矩阵的QR分解定理;
Based on this model, a new crypt structure called completely nonsingular matrix based substitution permutation network is designed.
基于这一模型,设计了一个称为基于全非奇异矩阵的代替置换网络的密码结构。
The upper bound of the differential probability is developed for the completely nonsingular matrix based substitution permutation network.
给出了基于全非奇异矩阵的代替置换网络的差分概率上界。
We got the standard form of nonsingular matrix over the finite field by means of BN pair decomposition under the similarity transformation of the permutation matrix.
利用有限域上一般线性群的BN对分解,给出有限域上的可逆矩阵在置换阵相似变换下的标准形。
Therefore, using large completely nonsingular matrix based substitution permutation networks can effectively improve cipher security in relation to differential cryptanalysis.
指出了使用大规模的基于全奇异矩阵的代替置换网络可有效地提高分组密码抗差分密码分析的安全性。
This paper introduces a completely nonsingular matrix based substitution permutation network that can effectively improve the performance of the block cipher against linear cryptanalysis.
论文介绍了一种基于全非奇异矩阵的代替置换网络,它可有效的提高分组密码抗线性密码分析的能力。
The reason of the non-turning point failure is that some nonsingular points of original system are translated to the singular points of the extended Jacobian matrix by the parameterization.
造成非临界点失败的原因是参数化使得原系统中的非奇异点变为系统扩展雅可比矩阵的奇异点。
The nonsingular H-matrix can find its application in many fields, yet quite difficult to distinguish in practice.
非奇异H矩阵在许多领域都发挥着重要作用,但在实用中判别H矩阵却是困难的。
By using the continuation theorem of topology degree theory and properties of nonsingular M-matrix, we obtain sufficient conditions for the existence of positive periodic solutions of this system.
利用拓扑度理论中的连续定理以及M -矩阵的性质获得了该系统正周期解存在的充分条件。
By using the continuation theorem of topology degree theory and properties of nonsingular M-matrix, we obtain sufficient conditions for the existence of positive periodic solutions of this system.
利用拓扑度理论中的连续定理以及M -矩阵的性质获得了该系统正周期解存在的充分条件。
应用推荐