By applying a fixed point theorem, the authors study the existence of positive periodic solutions to a class of differential equations with stated-dependent delay.
运用不动点定理,研究一类具状态依赖时滞的微分方程周期正解的存在性。
By using a well-known fixed point index theorem, we obtain the existence, multiplicity and nonexistence of positive periodic solution(s) to this equation.
利用一个著名的不动点指标定理,获得了该方程周期正解的存在性、多重性和不存在性。
A fixed point theorem in cone is used to study the existence of normal solution of second-order periodic boundary value problems.
利用锥不动点定理研究了一类二阶非线性周期边值问题正解的存在性。
Using fixed point theorems, in this paper we give sufficient conditions of the existence of bounded mild pseudo almost periodic solution for some semilinear differential equations.
利用不动点理论,给出了一类半线性微分方程有界的调和伪概周期解存在的充分条件。
In this paper, by using the fixed point index method, the authors discussed the periodic boundary value problem of first order differential systems.
摘要利用锥上的不动点指数研究了一阶非线性常微分方程组的周期边值问题。
In this paper, by using the fixed point index method, the authors discussed the periodic boundary value problem of first order differential systems.
利用锥上的不动点指数研究了一阶非线性常微分方程组的周期边值问题。
According to the theoretical results, we adjust the circuit parameters and then can find the phenomena of fixed point, periodic attractor, and chaos.
根据理论分析结果,调节电路的参数,可以成功地看到不动点、倍周期、混沌现象。
By using the fixed point theorem on cone, this paper studies the existence of positive solutions for first order periodic boundary value problem with impulses.
利用锥上的不动点定理讨论了一阶脉冲微分方程周期边值问题的正解的存在性。
Using the theory of fixed point, we give a theorem about the existence of asymptotically almost periodic solution for a class of delay integral equations.
利用不动点理论,给出了一类时滞积分方程渐近概周期解的存在性定理。
Accordingly we have weakly almost periodic of point in a bounded C-semigroup.
相应获得了有界c -半群点的弱概周期。
This paper presents a new existence theory for positive solutions to a kind of second-order discrete periodic boundary value problems by employing a fixed point theorem in cones.
运用锥不动点定理,给出了二阶离散周期边值问题正解的新的存在性定理。
Some solvability conditions of periodic solutions are obtained for a class of first order(superquadratic) non-autonomous Hamiltonian systems in light of the minimax methods of critical point theory.
运用临界点理论中的极小、极大方法得到一类超二次哈密顿系统的周期解的存在性的存在性定理。
By using fixed point theorem and constructing almost periodic sequence solution for difference equation, the authors get the sufficient conditions for the existence of the almost periodic solution.
利用不动点方法及对差分方程构造概周期解,获得了概周期解存在的充分条件。
The periodic solution can be bifurcated from equilibrium point with the variation of parameters.
系统随着参数的变化,从平衡点分岔出周期解。
The temporal periodic pulse can stabilize the system to spatial fixed point with temporal periodicity and spatial quasiperiodicity.
时间周期脉冲方法则能实现系统时间周期空间不动点和空间准周期的控制。
By using a fixed point theorem in cones, we investigate a second-order equation and the theorem of existence of unique positive periodic solution is given.
应用不动点定理,研究了一类二阶时滞微分方程,给出了其唯一周期正解的存在性定理。
The zero transfer point can be set arbitrarily by appropriately selecting transmitting periodic time T and number N, and it is advantageous to eliminate some interference in some frequency points.
适当选择发射周期T和周期数N就可以随意设置梳状滤波器的零传输点,有利于消除某些频率的干扰;
Based on the fixed point theorem of two-point extension type, sufficient conditions are derived for the existence of positive periodic solutions of delay difference equations.
利用两点拉伸型不动点定理给出一阶时滞差分方程周期解存在性的充分条件。
The concept of Geochemical Field of the elements is derived from the point mentioned above and the locations of the elements in the periodic table.
据此并结合元素在周期表中的位置,得出了元素地球化学场的概念。
Therefor, periodic inspection of the liver, the kidney and blood routine examination, adjusting treatment plan timely and strengthening instruction to the patients are the key point in prognosis.
因此定期检查肝、肾功能,血常规,及时调整治疗方案,加强对患者的教育,是预后良好的关键。
The stabilization of an unstable periodic orbit in a neighborhood of an unstable fixed point is studied.
讨论了不稳定不动点邻域的不稳定轨道的稳定问题。
Some sufficient conditions for the existence of periodic solutions of the equation are obtained by using the theory of critical point in functional.
再利用泛函的临界点理论,得到了方程具有周期解的充分条件。
By using critical point theory, we obtain some sufficient conditions for the existence of multiple periodic solutions to a discrete Hamiltonian system.
本文利用临界点理论,建立了一类离散哈密顿系统存在多个周期解的一些充分条件。
Using fixed point theorems, in this paper we give sufficient conditions of the existence of asymptotically-almost-periodic solution for some nonlinear delay integral equations.
利用不动点理论,给出了一类非线性延迟积分方程正的渐近概周期解存在的充分条件。
Using fixed point theorems, in this paper we give sufficient conditions of the existence of asymptotically-almost-periodic solution for some nonlinear delay integral equations.
利用不动点理论,给出了一类非线性延迟积分方程正的渐近概周期解存在的充分条件。
应用推荐