The method uses wavelet transform and principle component analysis to preprocess fault signal, afterward training and testing wavelet neural network with the preprocessed fault characteristic data.
该方法首先利用小波变换和主成分分析对故障信号进行预处理,然后用处理后的故障特征数据对小波神经网络进行训练和测试。
Aiming at the preceding problem, this paper puts forward a feature selection method using Information Gain (IG) and Principle Component (Analysis) (PCA).
针对上述问题,提出了信息增益(IG)与主成分分析(PCA)相结合的特征选择方法。
The paper briefly introduced the theoretical foundation of MSP method, which include Principle Component Analysis (PCA), Principle Component Regression (PCR), and Partial Least Squares (PLS).
介绍了多变量统计投影方法的主要理论基础,包括:主元分析(PCA)、主元回归(PCR)、偏最小二乘(PLS)。
Principle component analysis is based on multi-statistics method, and turning into an important way to proceed data for production monitoring and quality control.
主成分分析属多元统计方法,正逐步成为控制领域中一种重要的数据处理方法,用于生产监测和质量控制。
The analysis method includes linear regression and principle component analysis.
分析方法包括趋势分析、主分量分析。
These methods include the Principle component analysis, the Regression analysis, the Grey cognate analysis, the Delphi, the Ordering method, the Analytical Hierarchy Process, Fuzzy method.
目前学术界对土地等级评价所使用的主要方法有:主成分分析法、回归分析法、灰色关联度分析法、特尔斐法、排序法、层次分析法、模糊综合评价法。
The principle component analysis and face bray center are used to detect the symmetry axis, and the valley method is applied to detect and verify the eye candidates.
首先利用主分量分析法和人脸重心确定人脸对称轴,再结合山谷法进行眼睛候选点的提取和验证。
A nonlinear filtering method based on principle component analysis (PCA) was proposed according to the statistical characteristics of the Doppler ultrasound blood flow signal and wall thump signal.
根据超声多普勒血流信号和血管壁搏动信号的统计特性,提出了一种基于主元分析的非线性滤波方法。
A novel method for optimizing the principle component analysis in feature extraction is proposed, which making use of parallel coordinate plot for graphical presentation of multivariate information.
本文提出一种利用平行坐标图的多元信息表示对主成分分析特征提取方法进行优化的分类技术。
Combined the advantage of empirical mode decomposition (EMD) and principle component analysis (PCA), a blind separation method of rolling bearing faults is proposed based on EMD and PCA.
结合经验模态分解和主分量分析各自的优点,提出了一种基于EMD -PCA的轴承故障源的盲分离方法。
Combined the advantage of empirical mode decomposition (EMD) and principle component analysis (PCA), a blind separation method of rolling bearing faults is proposed based on EMD and PCA.
结合经验模态分解和主分量分析各自的优点,提出了一种基于EMD -PCA的轴承故障源的盲分离方法。
应用推荐