This paper proves that residues at conjugate complex poles of rational fractional function with real coefficients are conjugate complex Numbers as well.
留数是复变函数中的一个极其重要的概念,其应用也非常广泛,本文证明了实系数有理分式函数的共轭复极点的留数也互成共轭。
This paper proves that residues at conjugate complex poles of rational fractional function with real coefficients are conjugate complex Numbers as well.
留数是复变函数中的一个极其重要的概念,其应用也非常广泛,本文证明了实系数有理分式函数的共轭复极点的留数也互成共轭。
应用推荐