This paper discusses the theory and several algorithms of rational function interpolation.
本课题对有理函数插值方法的理论及其算法进行了研究。
Adopting geometric method, the rational function interpolation is constructed on polygonal element.
采用几何的方法构造出多边形单元上的有理函数插值。
So the adaptive rational function interpolation method can process a large number of sampling data for obtaining a rational interpolation without suffering singularity problems.
因此,本文提出的自适应有理函数插值方法可以对大量采样数据进行插值运算而不会遇到奇异性问题。
This paper presents a rational function interpolation scheme of polygonal elements based on highly irregular grids. It is named as polygonal rational function interpolation (RFI).
借鉴自然邻点插值法,提出了基于高度不规则网格多边形单元的有理函数插值格式—多边形有理函数插值。
This attribute virtually leads the proposed AFS approach to an ultra broad-band interpolation with a single rational function.
这一特性使得AFS方法能通过简单的有理函数实现宽带插值。
A new method of rational Boolean sum interpolation on an arbitrary triangle is developed in this paper. The structure of the interpolation function is simple.
本文提出了一个在三角形域上的有理布尔和插值的新方法,此方法的特点是所构造的插值函数结构简单,多项式准确集较高。
The differentiation matrices of unknown function are constructed by using barycentric rational interpolation.
采用重心有理插值近似未知函数,得到未知函数的各阶微分矩阵。
In this paper we give a simple interpolation of rational function-difference spline interpolation.
给出一种简单的有理分式插值——差分样条插值。
In this paper we give a simple interpolation of rational function-difference spline interpolation.
给出一种简单的有理分式插值——差分样条插值。
应用推荐