We study expert PID control, fuzzy adaptive PID control, RBF neural network PID control, internal control based on RBF neural networks.
研究了专家PID控制、模糊自适应PID控制、基于RBF神经网络整定的PID控制、基于RBF神经网络的内模控制。
In the control system, Bayes probability is introduced in the fuzzy RBF neural network and it intensity the inference ability and increase the servo precision.
在控制系统中,将贝叶斯概率引入到模糊rbf神经网络中,增强了系统的推理能力,提高了飞机各个航道位置的模拟伺服精度。
The model forecasts the daily load by the nonlinear approaching capacity of the RBF neural network, than corrects the errors by on-line self-tuning factors of fuzzy control.
该模型利用RBF神经网络的非线性逼近能力对预测日负荷进行了预测,并采用在线自调整因子的模糊控制对预测误差进行在线智能修正。
The model forecasts the daily load by the nonlinear approaching capacity of the RBF neural network, than corrects the errors by on-line self-tuning factors of fuzzy control.
该模型利用RBF神经网络的非线性逼近能力对预测日负荷进行了预测,并采用在线自调整因子的模糊控制对预测误差进行在线智能修正。
应用推荐