The congruences on a regular semigroup is completely determined by its idempotent congruence classes.
正则半群上的同余是由其幂等元同余类所完全决定的。
The Green relations on a regular semigroup with inverse transversals play important roles in studying the nature of this sort of semigroup.
具有逆断面的正则半群的格林关系在研究该类半群的性质时起到非常大的作用。
In this paper, we introduce the notion of left weakly regular semigroup and show that in a commutative semigroup, the complete regularity, regularity, left resp.
介绍弱左正则幺半群的概念,指出在可交换半群中,完全正则、弱左(右)正则和完全幂等是等价的。
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
A Completely regular congruence on an eventually regular semigroup is uniquely determined by its kernel normal system.
拟正则半群上的两个完全正则同余相等当且仅当它们的核正规系相同。
A Completely regular congruence on an eventually regular semigroup is uniquely determined by its kernel normal system.
拟正则半群上的两个完全正则同余相等当且仅当它们的核正规系相同。
应用推荐