• The main contents of first chapter are several difference schemes of first-order and second-order differential equations.

    第一有限差分方法主要内容两点式、三点式和五点式差分方案。

    youdao

  • The TM set of equations can be solved using a finite difference time domain (FDTD) approximation that is second-order accurate in both space and time.

    采用时间和空间二阶精确有限差分方法微分方程进行差分化。这样,空间的电磁场由时间有限差分法(FDTD)来求解。

    youdao

  • Modifying the salinity difference format and salinity equations of the original model, the present model USES the second-order accurate difference format and introduces the term of physical diffusion.

    改进模式盐度差分格式方程采用精度差分格式引入物理扩散项。

    youdao

  • The oscillation problem for a class of the second order neutral difference equations with several variable delay arguments and variable coefficients was studied.

    研究一类具有多个变滞量变系数的中立差分方程的解的振动性,得到了该类方程振动及其解的阶差分振动的充分条件。

    youdao

  • Some new criteria of oscillation or non-oscillation are presented for certain nonlinear second order difference equations. Several examples are given to illustrate the results.

    对一类非线性差分方程给出了几个振动非振动的判定定理,并举例说明了定理的应用。

    youdao

  • Chapter 3 is centered around the existence of periodical solutions for non self-adjoint nonlinear second order difference equations by invoking matrix theory and coincide degree theory.

    第三利用矩阵理论重合度理论,讨论了一类共轭非线性差分方程周期存在性问题。

    youdao

  • The oscillation for a class of the second order neutral difference equations with several variable delay arguments and variable coefficients are studied.

    研究了一类具有多个变滞量的变系数的中立型差分方程解的振动性,得到该类方程振动及其解的一阶差分振动的充分条件。

    youdao

  • Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.

    采用时间上二空间上高近似交错网格高阶差分公式求解弹性位移-应力方程,计算边界处应用基于傍轴近似法得到三维弹性波方程吸收边界条件。

    youdao

  • Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.

    采用时间上二空间上高近似交错网格高阶差分公式求解弹性位移-应力方程,计算边界处应用基于傍轴近似法得到三维弹性波方程吸收边界条件。

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定