The main contents of first chapter are several difference schemes of first-order and second-order differential equations.
第一章有限差分方法主要内容是一阶和二阶的两点式、三点式和五点式差分方案。
The TM set of equations can be solved using a finite difference time domain (FDTD) approximation that is second-order accurate in both space and time.
采用时间和空间均为二阶精确的有限差分方法,将偏微分方程进行差分化。这样,空间的电磁场可由时间域有限差分法(FDTD)来求解。
Modifying the salinity difference format and salinity equations of the original model, the present model USES the second-order accurate difference format and introduces the term of physical diffusion.
改进了原模式的盐度差分格式和方程,采用二阶精度差分格式并引入了物理扩散项。
The oscillation problem for a class of the second order neutral difference equations with several variable delay arguments and variable coefficients was studied.
研究了一类具有多个变滞量的变系数的二阶中立型差分方程的解的振动性,得到了该类方程振动及其解的一阶差分振动的充分条件。
Some new criteria of oscillation or non-oscillation are presented for certain nonlinear second order difference equations. Several examples are given to illustrate the results.
对一类二阶非线性差分方程的解给出了几个振动或非振动的判定定理,并举例说明了定理的应用。
Chapter 3 is centered around the existence of periodical solutions for non self-adjoint nonlinear second order difference equations by invoking matrix theory and coincide degree theory.
第三章利用矩阵理论与重合度理论,讨论了一类非自共轭非线性二阶差分方程周期解的存在性问题。
The oscillation for a class of the second order neutral difference equations with several variable delay arguments and variable coefficients are studied.
研究了一类具有多个变滞量的变系数的二阶中立型差分方程的解的振动性,得到了该类方程振动及其解的一阶差分振动的充分条件。
Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.
采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。
Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.
采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。
应用推荐