Stars are born from a kind of primal soup known as the interstellar medium.
恒星是由一种称为星际介质的“原汤”形成的。
The shock acts as a searchlight by revealing the structure of the interstellar medium.
冲击波能揭示出星际介质的结构,扮演着探照灯的角色。
Pulssar signal will be scattered as it passes through the Interstellar medium, what is called dispersion.
来自脉冲星的射电辐射在传播过程中会与星际间介质中的自由电子相互作用,发生色散现象。
This time-lag depends on the distance the signal has traveled through the interstellar medium: the longer the distance, the greater the time lag.
这个时间差依赖于信号在星际介质中传播的路程:路程越长,时间差越大。
Simple laws of physics suggest, that gas-dust complexes in the interstellar medium may evolve, first into protostars and subsequently into stars.
简单的物理学定律揭示出,星际介质中的气尘复合体可以进化,先是演化为原恒星,接下去再演化为恒星。
As gas flies away from the detonated star, it decays and reacts with the interstellar medium, producing light in many different colors and energy bands.
当气体从爆炸的中心远离时,它的亮度会减弱,并和附近的星际介质发生交互作用,产生各种颜色和波段的光。
Although studies of the interstellar medium do not depend on the precise choice of target star, the other scientific objectives clearly require that the target star has a planetary system.
虽然星际媒介的研究并不依赖于目标恒星的特定选择,但其他的科学目标明显需要目标恒星有着一个行星系统。
Interstellar Medium: What astronomers call all that stuff between the stars.
星际介质:即天文学家所称的恒星间的物质。
The filaments have widths that suggest they are formed as shockwaves from exploding stars travel through the medium, sweeping up and compressing the interstellar dust and gas.
丝状尘埃云的宽度暗示它们是形成自一些通过中等大小正在收缩的星际尘埃和气体的恒星然后爆发后的激波而成。
Free radicals and molecular ions play an important role in the study of interstellar medium, chemical reaction dynamics and medicines.
自由基分子及分子离子光谱在天体演化、化学反应动力学、医学等方面具有重要意义。
Free radicals and molecular ions play an important role in the study of interstellar medium, chemical reaction dynamics and medicines.
自由基分子及分子离子光谱在天体演化、化学反应动力学、医学等方面具有重要意义。
应用推荐