This paper is devoted to studying the asymptotic behavior of the intermediate point in the mean value theorem for first form curve integrals. A general result is obtained.
讨论了第一类曲线积分中值定理“中间点”的渐近性质,得到了更具一般性的新结果。
This article explores the four ways for solving integral inequality with the nature of definite integral, mean value theorem of differentials, Schwarz inequality and double integral.
本文利用定积分的性质、微分中值定理、施瓦兹不等式、二重积分等内容,研究了积分不等式的四种证法。
This paper discusses the asymptotic rate of "mean value point" in second mean value theorem for integrals.
主要讨论了第二积分中值定理“中值点”的渐近性和渐近速度。
Constructing auxiliary functions is the key in using differential mean value theorem to solve problems; there are many methods for constructing auxiliary functions.
构造辅助函数是利用微分中值定理解决问题的关键,构造辅助函数的方法较多。
The criterion extreme value of binary function for first partial derivative is given by means of the mean value theorem. The two theorems are obtained.
以中值定理为工具,给出了利用一阶偏导数判定二元函数极值的方法。
Two kinds of generalizations of the first mean value theorem of integral for integrable functions with different properties are established in the paper, the results extend the previous conclusions.
本文建立了两类可积函数的积分第一中值定理的推广形式,推广了已有结论。
This paper applies an integral upper limit functions to giving a method for the solution of the problems similar to those as the proven mean value theorem.
本文利用积分上限函数给出证明中值定理及类似问题的一种方法。
In this paper, second mean value theorem for integrals is studied, and some results of the inverse problem of the theorem are obtained.
给出了在各种情况下积分第二中值定理“中间点”的渐近性的几个结论,相信在积分学中有着很重要的作用。
This paper presents a generalization of mean value theorem for integrals and discusses the asymptotic properties of mean value of mean value theorem for integral.
对积分中值定理中间点的渐近性进行研究,给出了推广的积分第一中值定理的中间点的渐近性的一个公式。
In the article, a simple and elementary proof of monotonicity is given for the so-called extended mean values using Tchebycheff s integral inequality and the mean-value theorem for differential.
本文利用切比雪夫积分不等式和微分中值定理,对所谓的双参数拓广平均的单调递增性给出一种简单的证明。
This paper intends to discuss and prove the asymptotic behaviour of mean point in second mean value theorem for integrals in concessional terms.
对积分第二中值定理作了进一步的研究,得到了积分第二中值定理的逆问题及其逆问题的渐进性。
Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior.
研究积分第一中值定理,获得了其中值 渐近性的一个新结果。
Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior.
研究积分第一中值定理,获得了其中值 渐近性的一个新结果。
应用推荐