For instance, if you look at an expansion of an ideal gas, Not based on thermodynamics, ut based on the statistical mechanics.
比如说理想气体膨胀时的,不是热力学的角度来计算它,现在从统计力学。
Ludwig Eduard Boltzmann was an Austrian physicist famous for his founding contributions in the fields of statistical mechanics and statistical thermodynamics.
路德维格·爱德华·玻尔兹曼是一位奥地利的物理学家,因为在统计力学和统计热力学领域奠基性的贡献而被人们所熟知。
To understand the macroscopic phenomenological laws of irreversible thermodynamics in terms of deterministic dynamics is one of the long-standing tasks of non-equilibrium statistical physics.
从微观的、确定性的动力学方程来理解宏观的、不可逆的热力学现象是非平衡统计物理一项长期而又艰巨的任务。
The compiling ideas and principles, the contents and characters of the teaching outline for thermodynamics and statistical physics are induced.
介绍了《热力学、统计物理学》教学大纲编写的指导思想、编写原则、大纲内容和大纲的特点。
At present, the thermodynamic models of predicting the hydrate formation conditions are almost on the basis of classical statistical thermodynamics.
目前预测水合物生成条件的热力学模型几乎都是以经典统计热力学为基础的。
Ludwig Boltzmann let the statistical ideology enter the physics realm cpmpletely by explaining second law of thermodynamics with microcosmic point of view.
玻尔兹曼通过对热力学第二定律的微观解释最终使统计思想成为物理学思想的内容之一。
Based on the method of statistical thermodynamics of solutions, a statistical thermodynamic model of liquid mixtures is given.
应用溶液统计热力学方法和溶液理论,建立了多元液体混合物的统计热力学模型。
In this article, a different view and suggestion are given about hydrogen molecular partition function in teaching material of the thermodynamics and statistical physics.
该文就热力学统计物理教材中仲氢分子配分函数的表达式提出了不同看法,并给出了修改建议。
The function and limits of statistical thermodynamics in the developing of EOS are valued.
评价了统计力学在开发状态方程中的作用,并指出了其局限性。
Based on the statistical mechanice, professor Boltzmann established the mathematical theory of second Iaw of thermodynamics and fluctuation theory.
波尔兹曼用统计力学的方法建立了热力学第二定律的数学描述,提出了涨落理论。
You'd learn about statistical mechanics, and how the atomistic concepts rationalize thermodynamics.
你会学到在统计力学中,是如何用原子论的概念,阐释热力学的。
Reversible and irreversible thermodynamics, kinetics, quantum mechanics, and statistical thermodynamics are the roots of the described thermal analysis.
可逆和不可逆的热力学,动力学,量力学和统计热力学是被描述的热分析的根。
A new hypothesis is proposed in the paper to determine the superheat limit of liquid on the basis of fluctuation theory of statistical thermodynamics.
本文利用统计热力学涨落理论提出一个新的假说,并由此建立了确定液体极限过热度的新方法。
This paper discusses the essence of entropy and Second Law of Thermodynamics and points out that entropy and Second Law of Thermodynamics can be explained well by statistical mechanics.
用统计力学的观点,探讨了熵的统计意义及热力学第二定律的统计实质。
The liquid superheat limit and vapor subcooling limit in homogeneous nucleation are determined in the present paper by using density fluctuation theory of statistical thermodynamics.
应用统计热力学巨正则系综的密度涨落理论,提出了确定均质沸腾中液体极限过热度和均质凝结中蒸汽极限过冷度的方法。
A simple method is introduced to prove the third law of thermodynamics and the statistical exposition has been given for it.
介绍了证明热力学第三定律的一种简单方法并给出了其统计解释。
An equation for predicting the thermal conductivities of liquid mixtures is proposed on the basis of the subensemble method and the relativity of statistical thermodynamics.
根据统计热力学的子系统原理和统计热力学的相对论,提出一个新的液体混合物导热系数方程。
Comprising the finite time thermodynamics, nonequilibrium statistical theory and exergeocnomics, the maximum exergeoeconomic profit and performance limit are derived in the article.
将有限时间热力学、非平衡量子统计理论和火用经济学相结合,导出了量子斯特林制冷机的最大利润率以及对应的性能界限。
Comprising the finite time thermodynamics, nonequilibrium statistical theory and exergeocnomics, the maximum exergeoeconomic profit and performance limit are derived in the article.
将有限时间热力学、非平衡量子统计理论和火用经济学相结合,导出了量子斯特林制冷机的最大利润率以及对应的性能界限。
应用推荐