And that's the zeroth law thermodynamic.
这就是热力学第零定律。
We formulate these broad thermodynamic laws.
然后抽象这些一般的热力学定律。
In your equations, it's the same thermodynamic picture.
在方程里面,基本是相同的热力学图像。
The boiler is a typical complex thermodynamic system.
锅炉是典型的复杂热工系统。
On the thermodynamic framework e've been working with all term.
在热力学的框架下,我们已经处理过这些问题。
But the direct extrusion press has a thermodynamic problem.
但是正向挤压机也存在一个热力学的问题。
What thermodynamic function is naturally a function of N, V, T?
什么热力学量,是V,N和T的自然函数?
It operates on the same thermodynamic principles as refrigeration.
它如同冷冻一样在相同的热力学原理下运转。
In fact, we consider here two factors, a thermodynamic and a kinetic one.
事实上,我们认为这里有两个因素,一个是热力学以及一个是动力学。
Collectively, these features can be said to arise via thermodynamic constraints.
总体上可以说热力学限制了这些特性。
Hailstorms in Northern Greece: synoptic patterns and thermodynamic environment.
希腊北部雹暴:天气形势和热力环境。
So in the earlier part of the course, and saw the macroscopic thermodynamic treatment.
在课程的前一部分,见过宏观的热力学处理方法。
Thermodynamic entropy draws all chemical reactions down to their minimal energy level.
热力学的熵变将所有化学反应拉到它们的最低能量值[5]。
And then we can start writing out the results for the various thermodynamic properties.
这样我们就能开始写出不同结果,热力学性质的。
If it's not, then you're going to have trouble describing it using thermodynamic properties.
如果它不是,那么用热力学性质去,描述它就要有麻烦了。
OK, All right, so these are the thermodynamic quantities that you're familiar with already.
好,这些是你们已经,熟悉了的热力学量,让我们很快地。
The economic analysis of the thermodynamic system is one of important studies in this thesis.
火电厂热力系统的经济性分析是论文研究的重点之一。
I should be able to start from my microscopic picture and get to macroscopic thermodynamic results.
我们能够从微观图像出发,最终得到宏观热力学的结果。
The tephigram is a thermodynamic particularly suitable for representing atmospheric processes.
温熵图是一种热力学图,特别适合于描述大气过程。
This serves as a crude model of entropy, Smolyaninov says, representing the thermodynamic arrow of time.
可以看作是熵的粗糙模型,斯莫连尼诺乌说,它代表了热力学时间之箭。
And I'm not going to write out all of the individuals thermodynamic terms, but I'll write a few of them.
我不会写出,所有的各热力学项,我只会写出其中的一些。
But usually if you have a thermodynamic system, then it's big enough. That's what thermodynamics is about.
但一般对一个热力学体系,它总是足够大的,这正是热力学要表述的。
Thermal energy: Internal energy of a system in thermodynamic equilibrium by virtue of its temperature.
热能:处于热力学平衡状态的系统由于它的温度而具有的内能。
The laws of thermodynamics involve a concept called entropy for irreversible thermodynamic processes .
热力学定律包括着一个称为熵的有关不可递热力学过程的概念。
Since black holes do not classically emit radiation, the thermodynamic viewpoint was simply an analogy.
既然黑洞不是经典地发出辐射,熵的观点只是一个类推。
Like I promised, we're going to be able to derive every thermodynamic quantity if we just know the partition function.
就像我说过的,我就可以计算所有的热力学量,如果我知道了配分函数。
How does the time taken to establish thermodynamic equilibrium depend on the temperature in the experimental cell?
怎么花费的时间建立热力学平衡取决于在实验性细胞的温度?
How does the time taken to establish thermodynamic equilibrium depend on the temperature in the experimental cell?
怎么花费的时间建立热力学平衡取决于在实验性细胞的温度?
应用推荐