The uniqueness and existence theorem for a nonlinear fourth-order boundary value problem is established.
研究一类非线性四阶常微分方程两点边值问题,得到一个存在唯一性定理。
In this paper, we show the domain of the existence of the solution on Goursat problem for quasi—linear hyperbolic equation and obtain the Theorem of the existence and uniqueness in above domain.
本文以两个自变量的拟线性双曲型方程的古尔沙问题为例,应用反函数和积分不等式证明了等价积分方程组解的存在唯一性,同时给出了解的存在区域和已知参量的依赖关系。
The existence and uniqueness theorem of its solution is proved by the perturbation method and the estimation of error for its approximate solution is given.
然后利用摄动方法证明了这个问题解的存在唯一性,同时给出了解的渐近展开和误差估计。
Some existence and uniqueness theorems for above problem are established by using certain fixed point theorem based on the degree theory.
用基于度理论的不动点定理,建立了一系列存在唯一性定理。
In this paper an existence and uniqueness theorem for non-linear two-point boundary value problem is proved by means of Kantorovich 's theorem.
本文利用康托·洛维奇定理证明了非线性两点边值问题的一个存在唯一性定理。
The global inverse function theorem is applied for the existence and uniqueness of periodical solutions to the semilinear boundary value problems. Some results are improved.
本文运用整体反函数理论证明了一类半线性方程边值问题周期解的存在唯一性,推广和改进了已有的一些结果。
The global inverse function theorem is applied for the existence and uniqueness of periodical solutions to the semilinear boundary value problems. Some results are improved.
本文运用整体反函数理论证明了一类半线性方程边值问题周期解的存在唯一性,推广和改进了已有的一些结果。
应用推荐