At last, the adaptive vector quantization coding based on the DCT spectrum main orientation mentioned above is developed.
最后本文探讨了一种将基于结构特征的自适应分块与矢量量化相结合的编码方法。
This method connects fractal and vector quantization coding together, during the process of decoding, the only need to check the codebook and to transform the contrast.
由于该方法把分形和矢量量化编码结合起来,因此解码时只需查找码书,并仅进行对比度变换。
The work can be mainly divided into two aspects: lattice vector quantization in vector quantization coding for images and the lifting realization of the quincunx directional filter banks.
所做工作主要有两方面:一是矢量量化编码中的格型矢量量化,另一个是梅花型方向滤波器的提升实现。
This method is based on the techniques of block truncation coding and vector quantization.
该方法是以分块截断编码技术和矢量量化技术为基础的编码方法。
To tackle the derailment phenomenon consisting in side-match vector quantization image coding technology, we introduced support vector machine.
针对边缘匹配矢量量化图像编码方法存在的出轨现象,提出一种引入支持向量机的方法。
Image compression is one of the most important key techniques in image processing. Traditional compression methods include prediction coding, transform coding and vector quantization (VQ).
图像压缩是数字图像处理中最重要的关键技术之一,传统的图像压缩方法有预测编码、变换编码和矢量量化等。
The principle of fuzzy vector quantization (FVQ) for image coding is discussed in this paper, and an exponential fuzzy learning vector quantization algorithm (EFLVQ) is proposed.
本文分析了模糊矢量量化(FVQ)图像编码的原理,提出了一种指数型模糊学习矢量量化算法(EFLVQ)。
So this paper USES MSSVQ as the vector quantization technique for coding.
因此本文使用MSSVQ作为矢量量化技术来进行编码。
This paper presents a new strategy of particle-pair(PP) for vector quantization(VQ) in image coding.
本文给出了一种新的图像矢量量化码书的优化设计方法——粒子对算法。
This paper presents swarm optimization algorithm based on a pair of parallel particles, which can be used to get a good codebook in the vector quantization of image coding.
本文提出一种粒子群分组并行寻优码书设计算法,应用于图像的矢量量化编码中,它可以得到性能较好的码书。
Vector Quantization (VQ) is one of popular data compression and data coding methods for speech recognition at present.
矢量量化(VQ)是语音识别中广泛应用的一种数据压缩和编码方法。
Vector quantization, which has been applied successfully in the image coding, is more efficient than scale quantization.
矢量量化优于标量量化。它已成功地应用于图象的数据压缩。
To improve the compression ratio, image quality and coding efficiency, an image coding algorithm based on wavelet transform and scalar vector quantization is presented.
针对标量量化压缩比小而向量量化压缩速度慢、图像复原效果不理想等弱点,提出了基于小波变换的分类量化图像编码算法(简称“分类量化编码”)。
When coding the erroneous image by fractal vector quantization, a self-adaptive 2-d wiener digital filter to filtrate the contracted mean value image, which can result into a good quality codebook.
误差图像进行分形矢量量化编码时,使用设计的自适应二维维纳数字滤波器,对收缩的均值图像进行滤波后,可构造好的码书。
Finally, the vector quantization and the second generation picture coding are briefly introduced.
最后介绍近年开始研究的矢量编码以及第二代图象编码。
Finally, the vector quantization and the second generation picture coding are briefly introduced.
最后介绍近年开始研究的矢量编码以及第二代图象编码。
应用推荐