There is a growing trend among companies, organizations and individuals alike to gather information through web data mining to utilize that information in their best interest.
现在在公司、组织、个人中出现了一种通过网络数据挖掘收集信息然后利用那些他们最感兴趣的信息的趋势。
The company USES a form of data mining to group Web pages by content, which makes the search engine more efficient, he said.
他还提到公司使用一种数据挖掘技术来根据内容对网页进行归类,这样一来搜索引擎会更有效率。
This architecture aligns with W3C web standards for the semantic web, and allows much more flexible searching and data mining than would be possible with a MARC record.
这个结构和W3C的语义网网络标准相吻合,而且相比MARC数据,它能够进行更加灵活的搜索和数据收割。
For Amazon one of the main benefits is considered to be the data mining opportunities arising from having all web pages browsed by Kindle Fire users tunneled through AWS.
对于Amazon来说,从Kindle Fire用户通过AWS浏览的所有web页面中进行数据挖掘,这 其中的机会是最大的好处之一。
Linked data, semantic analysis, analytics and data mining all form a layer on top of the content-web that could serve as the foundation for the next series of applications and other added value.
关联数据、语义分析、分析数据挖掘,这些都可以作为下一代网络产品和其它附加值的基础。
The sheer volume of unstructured and semi-structured data found on the web and in internal data stores increases the need for intelligent and effective data mining.
web上和内部数据存储中非结构化和半结构化数据量的爆炸式增长,促进了对对智能且高效的数据挖掘的需求。
Semi-structured data, primarily in the form of HTML, is enabling new prospects for mining data from the web.
半结构化数据(主要是HTML形式的)正在开创从web挖掘数据的新局面。
Mining data from the web involves applying structure to information that is typically presented in a semi-structured format at best.
从web挖掘数据需要向通常最多只不过以半结构化格式呈现的信息应用结构。
什么是Web数据挖掘?
How Will Web Data Mining Benefit My Business?
Web数据挖掘如何助益我的生意?
Where Did Web Data Mining Come From?
Web数据挖掘从何而来?
A DOM Tree Alignment Model for Mining Parallel Data from the web.
一种从网上采集相似数据的文档对象模型的树形配置样例。
During the recent years, with the rapid development of Web data mining, how to find useful information in search engine log query has become an important research direction.
近年来,随着网络数据挖掘技术的迅猛发展,如何从搜索引擎查询日志中找到有用的信息成为一个重要的研究方向。
DOM Tree Alignment Model for Mining Parallel Data from the web.
一种从网上采集相似数据的文档对象模型的树形配置样例?。
Also, some of data mining algorithms that are commonly used in Web Usage mining are clustering, association rule generation, sequential pattern generation etc.
同时本篇论文也主要提出了一些经常被使用的数据挖掘的算法像聚类挖掘、关联规则挖掘、序列模式挖掘等。
Analyze the application of data mining in Electronic Commerce from three aspects: the design of Web site, Customer Relationship Management and Internet Marketing.
分析了数据挖掘技术在电子商务中的应用,并从电子商务网站设计、客户关系管理、网络营销三个方面进行了具体的阐述。
By mining these data, it can help us understand the behavior of user, thus improve the structure of Web sites or provide the Web page recommendation to the visitors.
对这些数据挖掘可以帮助理解用户的行为,从而改进站点的结构,或为来访者提供网页推荐服务。
With the increase of Web information, Web data mining has been the focus of data mining field.
随着互联网信息的增长,网络信息挖掘已经成为数据挖掘领域研究热点之一。
Semantic Web data mining is a data mining area based on semantic Web, which introduce new challenges to data mining research.
语义网络数据挖掘是基于语义网络环境的数据挖掘,它给数据挖掘技术的应用研究提出了新的课题。
Focusing on the web data collection problem in web mining, a collection method based on XML is designed.
针对WEB的数据挖掘中的WEB数据收集问题,设计了一种基于XML的数据收集方法。
Using the Web data mining technology makes full use of the advantages of cyber education, like resource sharing and no time limit.
从数据挖掘技术的角度研究了三江并流带地区丰富的旅游地质资源数据 ,采用“数据概化”的方法对资源数据集进行“维归约”预处理 。
Mining association rules in grid data mining is discussed and two solutions are presented. One uses the communication mode of local-local to balance the burden of communication among local Web sites.
文章对网格数据挖掘中的关联规则挖掘问题进行了探讨,给出了两种实现方案,一是采用局部-局部的通信模式,各个站点的通信负载比较均衡;
This article mainly refers to the basic concept, classification and process of web data mining, as well as its application in e-commerce.
主要介绍网络数据挖掘的基本概念、分类、挖掘的过程及其在电子商务中的应用。
By contrast, Referral Web primarily builds its model of its users' social network by data mining public documents found on the Web.
相反,提名网主要通过挖掘互联网上的公共文档来构建用户的社会网络模型。
Absrtact: Text classification is the base of information retrieval and data mining and it is widely used in web data mining and search engine.
摘要:文本分类是信息检索和数据挖掘的基础,被广泛应用于网络数据挖掘及搜索引擎等方面。
He wrote that data mining tools are being democratized and used more nowadays, similar to how online publishing tools were democratized in Web 2.0.
他在文章中写道,如今数据挖掘工具正变得越来越大众化,使用的也越来越广泛,这点跟Web2.0时代在线发布工具的普及化过程很相似。
It also describes the presence of web information and the method of collection of web information. It describes the usage of data mining technology and build of agriculture data model.
分别论述了收集原则、信息的存在方式与收集方式,并介绍了应用数据挖掘技术,建立农业数据模型等方面的内容。
Based on web mining technology, automatic text classification has become a hot research area in the field of data mining and net mining.
文本数据分类以文本挖掘技术为基础与核心,是近年来数据挖掘和网络挖掘领域当中的一个研究热点。
Beginning with an analysis of the present situation of WEB information retrieval, points out its main limitations and induces WEB data mining.
首先分析了WEB信息检索的现状,主要针对WEB信息检索的局限性,引出WEB数据挖掘,并对WEB数据挖掘技术作了概要的介绍。
Beginning with an analysis of the present situation of WEB information retrieval, points out its main limitations and induces WEB data mining.
首先分析了WEB信息检索的现状,主要针对WEB信息检索的局限性,引出WEB数据挖掘,并对WEB数据挖掘技术作了概要的介绍。
应用推荐