这就是代数基本定理。
研究和总结了用复变函数的观点与方法来证明代数基本定理。
This paper proves fundamental theorem of algebra with Liouville's theorem , logarithmic residue theorem , argument principle, Rouche theorem, maximum (minimum)modules principle and zero point theorem.
代数体函数的第二基本定理是一个基本而重要的定理,但它是关于常数的,其适用范围有局限性。
The second fundamental theorem of algebraical functions is fundamental and important but it is about constant Numbers and its applicative area has a limit.
从复变函数理论出发,利用辐角原理、最大模原理、最小模原理给出代数学基本定理的几种新的证明方法。
This paper uses several methods of complex functions theorey to prove fundamental theorem of algebra by argument principle, maximum modulus principle and minimum modulus principle.
后者以高斯的“代数方程的基本定理”作为结束。
The latter is concluded by Gauss's famous "Fundamental Theorem of Algebra".
从复变函数理论出发,利用辐角原理、最大模原理、最小模原理给出代数学基本定理的几种新的证明方法。
The minimum modulus principle is proved by using the preserving field theorem, and the span of minimum modulus point is discussed.
从复变函数理论出发,利用辐角原理、最大模原理、最小模原理给出代数学基本定理的几种新的证明方法。
The minimum modulus principle is proved by using the preserving field theorem, and the span of minimum modulus point is discussed.
应用推荐