我们要计算这个东西:伴随矩阵。
We will have to compute something called the adjoint matrix.
矩阵的伴随矩阵在矩阵理论中有着重要地位。
Adjoint matrix of matrix plays an important part during the matrix theory.
研究了全矩阵环上保持伴随矩阵的线性映射的形式。
The forms of linear maps preserving adjoint matrix between two full matrix rings have been given.
伴随矩阵在矩阵的运算和应用中起着非常重要的作用。
Adjoint matrix plays an important role in matrix operation and application.
讨论了交换环上伴随矩阵的若干性质,给出了整环上的一个主要结论。
Several properties of adjoint matrix over an arbitrary ring and obtain some results over domain are given.
每找出一个错误位置,对伴随式进行一次迭代运算并使伴随矩阵降一阶。
After every error location has been found out, we calculate the syndrome values by an iteration method and reduce the orders of syndrome matrix by one.
提出的理论采用伴随矩阵制定边值问题抵达严格界限几何分析性分析错误。
The proposed theory exploits the adjoint formulation of boundary value problems to arrive at strict bounds on defeaturing induced analysis errors.
介绍一种快速RS译码方法,利用伴随矩阵的奇异性找出RS码的错误位置。
The paper introduces a method of fast decoding RS code. It USES the singularity of syndrome matrix to find out the error locations of RS codes.
本文给出了用特征矩阵的伴随矩阵求惯量主轴的代数方法,并通过实例作了说明。
The method to calculate principal axes of inertia by adjoint matrix of eigen matrix is given, examples are presented.
利用与每个四元数矩阵相关联的复伴随矩阵,问题被简化为关于复数矩阵的并行问题。
The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quaternion matrix.
本文刻画了整环上的全矩阵空间、对称矩阵空间和上三角矩阵空间上保持伴随矩阵的线性算子的结构。
In this paper, we characterize the linear operators preserving adjoint matrices on the Spaces of all matrices, symmetric matrices and upper triangular matrices over domain.
在定义伴随矩阵的衍生阵——陪同矩阵概念的基础上,探索陪同矩阵的性质并加以证明,同时给出应用举例。
Based on the definition of accompanying matrix which is the derivative matrix of adjoint matrix, the properties of an accompanying matrix are explored and proved.
本文剖析了线性代数中伴随矩阵、行向量与列向量的乘积、正交矩阵几个较难掌握的概念,由此引出这些概念的一些基本特征和性质。
This article analyzes a few profound concepts, such as companion matrix, line vector, column rector, orthogonal matrix, and recommend many qualities, which are difficult to grasp for many students.
本文命名了赛马矩阵问题,并利用笔者提出的公式化方法和伴随序列法解决了此问题。
This paper names the race matrix problem, and resolves it using the formula method and the companion method presented by us .
本文命名了赛马矩阵问题,并利用笔者提出的公式化方法和伴随序列法解决了此问题。
This paper names the race matrix problem, and resolves it using the formula method and the companion method presented by us.
给出了非奇异矩阵a的伴随的广义特征向量的表达式。
An expression of the generalized eigenvector of adjoint matrices for nonsingular matrix a is derived.
应用分式化方法刻画了唯一分解环上对称矩阵模的保持伴随函数的线性变换的形式。
By the fractional method, characterized the linear preservers of the adjoint function on the symmetric matrix module.
并针对该系统所用的RS(255,247)码推导出了一些基本公式,包括生成多项式,伴随式矩阵,关键方程等。
At the same time, some basic formulas of RS(255,247)code are also concluded, such as generated polynomial, syndromes matrix, key equation and so on.
伴随于G的另一个矩阵是邻接矩阵。
本文根据伴随系统理论,在某飞行器制导工具误差的精度评定中加以实际应用,求出落点偏差的协方差矩阵。
In this paper, the adjoint system theory is applied to the guidance accuracy assessment of the flying vehicle, and the covariance matrix of the impact point deviation is solved.
企司实业给出了非奇异矩阵a的伴随的广义特征向量的表达式。
An expression of the generalized eigenvector of adjoint matrices for nonsingular matrix a is derived...
企司实业给出了非奇异矩阵a的伴随的广义特征向量的表达式。
An expression of the generalized eigenvector of adjoint matrices for nonsingular matrix a is derived...
应用推荐