因此,对于非正交坐标系测量系统的误差研究变得非常有意义。
As a result the research on the system 's error is of great meaning.
采用非正交坐标系可不用考虑电磁场的分解与叠加,减少网格数量,使理论研究方便快捷。
Using nonorthogonal coordinates system can avoid the decomposition and composition of electromagnetic field, and reduces the quantity of grids.
介绍一种在非交错网格上,求解非正交曲线坐标系下的流动控制方程的方法。
This paper presents numerical solution for governing equation of flows in curvilinear coordinate system with nonstaggered grids.
本文讨论在非正交曲线坐标系中,粘性流矢量方程一种新的展开思路。
A new idea is suggested to extend the viscous vector equations in non-orthogonal curvilinear coordinates.
运用贴体坐标转换方程对其温度场控制方程进行离散和求解,生成了梯形区域物理平面的贴体网格,同时应用非正交曲线坐标系对任一角度的梯形区域的温度场进行模拟计算。
The body-fitted transformation equation was used to disperse and compute the dominate equation of temperature filed, producing the body-fitted grids of the physical domain of the trapeziform region.
在非正交边界拟合曲线坐标系下 ,建立非交错网格变量布置的水流计算模式 。
The governing equations are discretizated with non-staggered grid by means of finite volume method.
在非正交边界拟合曲线坐标系下 ,建立非交错网格变量布置的水流计算模式 。
The governing equations are discretizated with non-staggered grid by means of finite volume method.
应用推荐