It is proved that the Fermat Grand Theorem is tenable in the first case.
证明了费尔马大定理第一情形成立。
Pierre DE Fermat had proposed the theorem in 1637, and a proof had only recently been discovered when the episode aired.
皮埃尔。德。费马在1637年发现这个定理,但证明可是在这集动画片播出前不久才刚刚公布的。
The algorithm of distinguishing prime number is improved on the basis of Eratosthenes' sieve method and Fermat 's minor theorem.
在筛法和费尔马小定理的基础上,利用索阶乘及判别数对如何判别一个整数是否是一个素数的算法加以改进。
This proprietary, shareware computer algebra system is named for one of the most famous mathematicians who ever lived: Pierre DE Fermat.
这个专有共享软件计算机代数系统是为纪念已故最著名数学家之一pierredeFermat而命名的。
By using boundary circle and restricted region, this paper gives a criterion for judging whether Fermat point is a triangular point.
本文利用限制圆和限制区域,给出了费尔马点为三角点的判断条件,同时得到了特殊的正三角形的三角点的分布情。
This paper generalized and proved a famous geometry theorem, and obtained general solution of Fermat Problem by pure geometric method thereby.
本文对一道著名几何定理进行了推广与证明,从而用纯几何方法解决了一般的费尔玛问题。
After comparison with the two modular inverse algorithms, we selected the extended Fermat method from the perspective of improving performance.
对比了两种模逆算法,从提高性能的角度选取了扩展的费尔马方法。
The solution of this conjecture by Andrew Wiles provided an understanding of this structure uncomparably deeper than the original message carried by the Fermat Theorem.
从安德鲁·怀尔斯对费马大定理的解答中获得的理解比费马大定理给出的原始信息更深刻。
The paper is to prove the refraction on two kinds of medium interfaces of electric displacement line using the boundary condition of the electric field and Fermat Principle.
利用电场边界条件和费马原理证明电位移线在两种介质界面上的折射。
In this paper, we find out a kind of method of verifying whether an integer is quasi-amicable or not, and prove the Fermat numbers are never perfect or part of an quasi-amicable pair.
为了判断整数是否为拟亲和数,文章在讨论费玛数和数论函数性质的基础上,找到了一种验证一个整数是否是拟亲和数的方法,从而证明了费玛数不与其他正整数构成拟亲和数对的结论。
In this paper, we find out a kind of method of verifying whether an integer is quasi-amicable or not, and prove the Fermat numbers are never perfect or part of an quasi-amicable pair.
为了判断整数是否为拟亲和数,文章在讨论费玛数和数论函数性质的基础上,找到了一种验证一个整数是否是拟亲和数的方法,从而证明了费玛数不与其他正整数构成拟亲和数对的结论。
应用推荐