The slow subsystem control law is designed by Lyapunov method.
利用动态逆方法设计了快子系统控制律。
This paper use the principle to solve Lyapunov matrix equation.
本文利用该原理解矩阵方程。
Lyapunov function is established by using energy integral method.
应用能量积分法建造了一个李亚普诺夫函数。
By Lyapunov method, the tracking error asymptotically converges to zero.
通过理论分析,证明了跟踪误差收敛到零。
The function of weak Lyapunov functions in stabilization design is studied.
探讨弱李雅普·诺夫函数在镇定设计中的作用。
Finally, we prove the existence of several families of Lyapunov functionals.
最后,我们又证得了几族李雅普·诺夫泛函的存在性。
The stability and robustness of the entire system is proved by Lyapunov method.
用李亚普诺夫方法证明了整个系统的稳定性和鲁棒性。
The state estimation error is proved to asymptotically approach zero with the Lyapunov method.
基于李亚普诺夫方法,证明了状态估计误差渐近稳定且渐近收敛到零。
The existence of the chaos is confirmed by calculation and analysis of its Lyapunov exponents.
混沌的存在是由李雅普·诺夫指数的计算和分析所确定。
Positive maximum Lyapunov exponent was obtained from the signals, showing certain chaos features.
研究表明,肌电信号具有正的李雅谱诺夫指数,表现出一定的混沌特征。
The weight adjustment law is got based on Lyapunov theory to assure the stability of the control system.
根据李亚普诺夫稳定性理论推导了自适应系统权值的调整规律,从而保证了闭环系统的稳定性。
A learning algorithm based on Lyapunov stability is derived to fuzzy relational model identification in this paper.
本文在李雅普·诺夫稳定性意义下,提出了一种辨识模糊关系模型的学习算法。
The adaptive speed recognition algorithm without speed sensor control was deduced by applying the lyapunov stability theory.
通过李亚普诺夫稳定性理论,推导出一种无速度传感器控制的速度自适应辨识算法。
The stability of the error system is analyzed by a Lyapunov function, which shows that the errors are exponential convergent.
利用李亚普诺夫函数分析了误差系统的稳定性,说明误差是指数收敛的。
Lyapunov Equation based algorithm for calculating state feedback gain is a comparatively normal algorithm used in pole assignment.
基于李亚普诺夫方程的状态反馈增益算法是极点配置算法中比较常见的一种。
It is proved that chaotic systems could be controlled by changing the Lyapunov exponents of the systems and setting it to be negative.
提出了通过改变离散混沌系统的李雅普·诺夫指数对离散混沌系统进行控制的一种方法。
Applying Lyapunov direct method, a design method of continuous robust controller is proposed based on the upper bounds of the uncertainties.
应用李亚普诺夫直接法,提出了一种基于不确定项上界的连续型鲁棒控制器设计方法。
Using the theory of Lyapunov asymptotic stability, the chaos self synchronization of Lorenz system and analogy Lorenz system are easily realized.
利用李雅普诺夫渐近稳定性定理,很方便地实现了洛沦滋和类洛沦滋系统的混沌自同步。
The Control for chaotic synchronization is directly designed based on lyapunov's direct method by choosing a positive definite lyapunov function.
选择一正定的李亚普诺夫函数,基于李亚普诺夫直接法求出混沌同步的控制量。
On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations.
用矢量李雅普诺夫函数解决大系统的稳定性问题必须要判断矢量比较方程的稳定性。
The navigation technique of robot control using artificial potential fields is based on fuzzy logic and stability is guaranteed by Lyapunov theory.
利用人工势能场的机器人导航控制技术由模糊控制实现,系统的稳定性由李雅普·诺夫原理保证。
The practical stability in terms of two measures of impulsive differential systems and its perturbed systems is developed by Lyapunov direct method.
运用李雅普·诺夫直接方法研究了脉冲微分系统及其摄动系统关于两个测度的实际稳定性。
A new design scheme of adaptive fuzzy controller is proposed based on the model reference adaptive fuzzy control (MRAFC) and Lyapunov s second method.
基于模型参考自适应模糊控制和李亚普诺夫第二方法,提出了一种自适应模糊控制器设计的新方案。
Meanwhile, the design algorithm for the switching state feedback controllers and the common Lyapunov function of the closed-loop switched system is given.
同时,给出了切换状态反馈控制器和闭环切换系统的公共李雅普诺夫函数的设计算法。
The decentralized adaptive controller is designed and the adaptive parameters are decided by the Lyapunov function in order to assure the system is stable.
该控制器对系统各通道进行分散式控制,利用李亚普诺夫函数的确定过程求解各自适应参数表达式,以保证了系统的稳定性。
This article mainly introduce the applications of MATLAB - function in time - domain, s - domain and Lyapunov stability analysis of linear constant system.
本文主要介绍线性定常系统的时域稳定性分析、频域稳定性分析和李雅普诺夫稳定性分析时MATLAB函数的应用。
Multiple Lyapunov functions method is introduced to design the switching law between controllers, the system is asymptotically stable under the switching law.
采用多李亚普诺夫函数方法设计控制器的切换律,系统在此切换律下可以达到渐近稳定。
Multiple Lyapunov functions method is introduced to design the switching law between controllers, the system is asymptotically stable under the switching law.
采用多李亚普诺夫函数方法设计控制器的切换律,系统在此切换律下可以达到渐近稳定。
应用推荐