Lyapunov function is established by using energy integral method.
应用能量积分法建造了一个李亚普诺夫函数。
The function of weak Lyapunov functions in stabilization design is studied.
探讨弱李雅普·诺夫函数在镇定设计中的作用。
Properly processed, robust criteria can be obtained by using Lyapunov function method.
通过适当的处理,应用李雅普诺夫函数法,得到了鲁棒稳定性的判别准则。
Finally, using Lyapunov function theoretical analyze the stability conditions of two improved SPO.
最后利用李雅普·诺夫函数从理论上分析了两种改进算法的稳定性条件。
The stability of the error system is analyzed by a Lyapunov function, which shows that the errors are exponential convergent.
利用李亚普诺夫函数分析了误差系统的稳定性,说明误差是指数收敛的。
The Control for chaotic synchronization is directly designed based on lyapunov's direct method by choosing a positive definite lyapunov function.
选择一正定的李亚普诺夫函数,基于李亚普诺夫直接法求出混沌同步的控制量。
Based on a stochastic Lyapunov function method, sufficient conditions which ensure the robust asymptotic stability in the mean square are obtained.
通过构造随机lyapunov函数,得到了NCS在均方意义下鲁棒渐近稳定的充分条件。
Meanwhile, the design algorithm for the switching state feedback controllers and the common Lyapunov function of the closed-loop switched system is given.
同时,给出了切换状态反馈控制器和闭环切换系统的公共李雅普诺夫函数的设计算法。
The decentralized adaptive controller is designed and the adaptive parameters are decided by the Lyapunov function in order to assure the system is stable.
该控制器对系统各通道进行分散式控制,利用李亚普诺夫函数的确定过程求解各自适应参数表达式,以保证了系统的稳定性。
Based on a piecewise quadratic Lyapunov function, this paper presented a stability analysis and optimal controller design method for piecewise linear systems.
对于分段线性系统稳定性分析以及控制器的优化设计问题,本文给出了一种基于分段二次李雅普·诺夫函数的求解方法。
After Lyapunov function is DE - rived, with theoretical analysis, energy-based control design method is discussed in order to solve the global stability problem.
并在构建李雅普·诺夫函数及理论分析的基础上提出了基于能量的控制器方法。
Then, by Lyapunov function and linear matrix inequality(LMI), the sufficient conditions are given to make the singular networked control system exponentially stable.
利用李雅普诺夫函数方法和线性矩阵不等式方法,给出了广义网络控制系统指数稳定的充分条件。
Use a new way to solve the Lyapunov function and controllers for a class of nonlinear systems, which involve a base system with a control input and a forwarding structure.
这部分讨论的非线性前馈系统包括一个具有可控输入的基准系统和一个前步结构,且系统里的这两部分都允许是非线性的和高阶的。
Finally, by using the concept and method of the Lyapunov function, a sufficient condition for the approximate stability in the large field of the closed-loop control system is derived.
最后,利用李雅普诺夫函数概念和方法得到了闭环控制系统具有大域渐近稳定性的充分条件。
This article makes use of variable gradient method and structure Lyapunov Function to solve a kind of global asymptotic stability for solutions of non-linear system of the second order.
用变量梯度法构造李雅普·诺夫函数,解决一类二阶非线性系统解的全局渐近稳定性问题。
The global exponential stability of a class of linear interconnected large scale systems with time delays was analyzed based on M matrix theory and by constructing a vector Lyapunov function.
利用M矩阵理论,通过构造适当的向量李雅普诺夫函数,研究一类具有时变时间滞后的线性关联大系统的全局指数稳定性。
The global exponential stability of a class of linear interconnected large scale systems with time delays was analyzed based on M matrix theory and by constructing a vector Lyapunov function.
本文利用M-矩阵理论,应用微分不等式以及拓扑学等有关知识,通过构建向量李雅普诺夫函数,研究了三类时间滞后大系统的指数稳定性以及智能交通系统中车辆纵向跟随控制问题。
Utilizing piecewise continuous vector Lyapunov function, the practical stabilization of control systems with fixed moments of impulse effects by establishing a new comparison result is considered.
借助于向量李雅谱诺夫函数,通过建立一个新的比较结果,研究了具有固定时刻脉冲的控制系统的实际稳定性。
The stability of time-delay and time-varying large scale systems with impulsive effect is investigated by means of the comparison principle and vector Lyapunov function with discontinuous derivative.
运用比较原理和导数不连续的李雅普诺夫函数,结合分解集结等方法,研究具有滞后的测度型线性时变脉冲扰动大系统的全局指数稳定性。
This article mainly introduce the applications of MATLAB - function in time - domain, s - domain and Lyapunov stability analysis of linear constant system.
本文主要介绍线性定常系统的时域稳定性分析、频域稳定性分析和李雅普诺夫稳定性分析时MATLAB函数的应用。
By Lyapunov candidate function method, this paper concludes that the closed-loop system is globally uniformly asymptotically stable at origin.
用李雅普·诺夫候选函数方法,得出了在该控制律作用下的闭环系统在原点具有全局一致渐近稳定性的结论。
By Lyapunov candidate function method, this paper concludes that the closed-loop system is globally uniformly asymptotically stable at origin.
用李雅普·诺夫候选函数方法,得出了在该控制律作用下的闭环系统在原点具有全局一致渐近稳定性的结论。
应用推荐