And, that's given by the balance between the attractive force of the ions offset by the repulsive force in the electronic shells.
而那是由,在离子的电子层之间的,引力和斥力相互抵消得到的。
There is a repulsive force, the attractive force between ions of opposite charge is offset by a repulsive force due to electron cloud interactions.
有一个斥力时,存在于电性不同的离子间的引力,是可以被抵消的,因为电子可以相互影响。
And shielding is a little bit of a misnomer because it's not actually that's the electron's blocking the charge from another electron, it's more like you're canceling out a positive attractive force with a negative repulsive force.
屏蔽有一点点用词不当,因为它事实上不是,电子阻挡了来自另一个电子的电荷,它更像你在用一个负排斥力,抵消一个正吸引力,但是屏蔽是考虑这个问题,的很好的方式。
That's the huge force that we're talking about in terms of making a bond stable, but there are also repulsive forces, so you can imagine we're going to have electron-electron repulsion between the two electrons if we're bringing them closer together.
正是这个非常强的力,使得我们所讨论的这个键能够稳定存在,但是其中还有排斥力存在,大家可以想象一下,我们会有电子与电子之间的排斥力,如果让它们离得更近。
This cation feels the repulsive force of the cation over here.
这一个阳离子受到了来自,另一阳离子的排斥力。
So, shielding happens when you have more than one electron in an atom, and the reason that it's happening is because you're actually canceling out some of that positive charge from the nucleus or that attractive force with a repulsive force between two electrons.
所以当你们在原子中有多于一个电子,屏蔽就会发生,它之所以会发生的原因是,你们实际上抵消了,一些来自原子核的正电荷,或者来自吸引力,在两个电子之间。
And, there is a mutual repulsive force here.
并且有一个相互的斥力。
应用推荐