• It's going to be positive in terms of its wave function or in terms of its phase anywhere where y is positive.

    只要y大于零它的波函数,或者说是相位为正。

    麻省理工公开课 - 化学原理课程节选

  • Came back and just after New Year's 1926 and gave us wave mechanics.

    在1926年的新年后回来了6,并给我们了波动力学。

    麻省理工公开课 - 固态化学导论课程节选

  • So, we can say that a circle is a good approximation for a 1 s wave function.

    所以我们说一个圆是,对1s波函数的好的近似。

    麻省理工公开课 - 化学原理课程节选

  • So, there's a political mobilization in the late 1860s, and in the beginning of 1870 there's a wave of strikes.

    因此,在十九世纪六十年代晚期,掀起了一场政治动员,一八七零年开年,法国便迎来了一场罢工潮

    耶鲁公开课 - 1871年后的法国课程节选

  • That's the interactive program we have both in shock wave and in job of 3D, which allows students to build molecules.

    那便是互动项目,我们同时有冲击波,和3D效果,使学生能够,构建分子。

    麻省理工公开课 - 媒体、教育、市场课程节选

  • What' s better is to plash yourself in the middle of something you genuienly love, and wait for the wave to come and find you.

    更好的办法是置身于,自己真正热爱的事业当中,等待潮流来追随你。

    普林斯顿公开课 - 领导能力简介课程节选

  • And what here is just a graph of the 1 s wave function going across some radius defined this way, and you can see that the probability - well, this is the wave function, so we would have to square it and think about the probability.

    这里是,1s波函数,沿这个方向的图,你们可以看到概率,这是波函数,所以我们可以把它平方,并想成是概率。

    麻省理工公开课 - 化学原理课程节选

  • More interesting is to look at the 2 s wave function.

    看2s轨道波函数,更加有趣。

    麻省理工公开课 - 化学原理课程节选

  • The more important thing that I want you to notice when you're looking at this wave equation for a 1 s h atom, is the fact that if you look at the angular component of the wave function, you'll notice that it's a constant.

    我要你们注意的,更重要的一点是,当你们看到,这个氢原子1s轨道方程的时候,如果你们看,波函数,的角向部分,你们会发现它是一个常数。

    麻省理工公开课 - 化学原理课程节选

  • And when we take the wave function and square it, that's going to be equal to the probability density of finding an electron at some point in your atom.

    当我们把波函数平方时,就等于在某处,找到一个电子的概率密度。

    麻省理工公开课 - 化学原理课程节选

  • If de Broglie is correct, we could then model the electron in its orbit not moving as a particle, but let's model it as a wave.

    如果德布罗意是对的,那么我们可以在电子轨道中建立电子模型,不是像粒子一样运动,而是像波一样运动。

    麻省理工公开课 - 固态化学导论课程节选

  • But when we're thinking about actual wave behavior of electrons, it's just important to keep in the back of our head that some areas have positive amplitude and some have negative.

    电子的波动行为时,我们,要记住,某些地方是正的,某些地方是负的,当我们讲到。

    麻省理工公开课 - 化学原理课程节选

  • So, regardless of the type of wave that we're talking about, there's some common definitions that we want to make sure that we're all able to use, and the first is amplitude.

    所以,不管我们讨论的,是哪种波,它们都有一些我们,能用到的共同的定义,其中第一个就是幅值。

    麻省理工公开课 - 化学原理课程节选

  • We're seeing that the wave function's adding together and giving us more wave function in the center here.

    我们看到波函数加在一起,使中间的波函数更多了。

    麻省理工公开课 - 化学原理课程节选

  • But before we get to that, in terms of thinking just think, OK, this is representing my particle, this is representing my electron that's what the wave function is.

    但是在我们谈论那个部分之前,在理解方面,仅仅是理解,好的,它代表了粒子,它代表了电子,这就是波函数。

    麻省理工公开课 - 化学原理课程节选

  • So, that's probability density, but in terms of thinking about it in terms of actual solutions to the wave function, let's take a little bit of a step back here.

    这就是概率密度,但作为,把它当成是,波函数的解,让我们先倒回来一点。

    麻省理工公开课 - 化学原理课程节选

  • So, as an example, let's take argon, I've written up the electron configuration here, and let's think about what some of the similarities might be between wave functions in argon and wave functions for hydrogen.

    所以作为一个例子我们来看看氩,我已经把它的电子构型写在这里,我们来考虑氩和,氢波函数之间的,一些相似性。

    麻省理工公开课 - 化学原理课程节选

  • This is a table that's directly from your book, and what it's just showing is the wave function for a bunch of different orbitals.

    这是一张你们书里的表格,它展示了各种,不同的轨道波函数。

    麻省理工公开课 - 化学原理课程节选

  • sigma1s And what we end up for our molecular wave function is sigma 1 s.

    最后我们得到了分子波函数。

    麻省理工公开课 - 化学原理课程节选

  • So the probability again, that's just the orbital squared, the wave function squared.

    同样,概率密度,这就是轨道的平方,波函数的平方。

    麻省理工公开课 - 化学原理课程节选

  • Remember this is our bond axis here, and you can see there is this area where the wave function is equal to zero all along that plane, that's a nodal plane.

    记住这是我们的键轴,你可以看到在这些区域,波函数在这个面内全都是零,这是节点面。

    麻省理工公开课 - 化学原理课程节选

  • We can't actually go ahead and derive this equation of the wave function squared, because no one ever derived it, it's just an interpretation, but it's an interpretation that works essentially perfectly.

    从这个方程中,导出,波函数的平方,没有人可以这样做,这仅仅是一种解释,但这种解释,能解释的很好,自从它第一次被提出来之后。

    麻省理工公开课 - 化学原理课程节选

  • All right. So let's look at some of these wave functions and make sure that we know how to name all of them in terms of orbitals and not just in terms of their numbers.

    好,让我们来看一下,这些波函数,并确定我们都知道,怎么用轨道,而不仅是量子数来命名它们,一旦我们可以命名它们。

    麻省理工公开课 - 化学原理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定