A new algorithm derived from Chebyshev polynomials is presented for the approximate analytic solution of infinite-time linear-quadratic optimal feedback control law for time-delay systems.
给出了用切比雪夫多项式方法,求时滞系统的无穷时间线性二次型反鐀控制律的近似解析解的新方法。
And two methods of optimal control and pole disposition is used in design on feedback law.
在反馈规律设计中采用了最优控制和极点配置二种方法。
The design problem of a feedforward and feedback optimal control law is studied for linear systems affected by additive persistent disturbances.
针对具有外部持续扰动的线性系统,研究前馈反馈最优控制律的设计问题。
We give the existence and uniqueness conditions of the feedforward and feedback optimal control law, and present an actualizing algorithm of solving the optimal control law.
给出了前馈-反馈最优控制律的存在唯一性条件,并提出了最优控制律的实现算法。
The existence of a unique optimal control, the optimality conditions of first order, and the synthesis of the optimal feedback law a re investigated.
证明了最优控制的存在唯一性,给出了一阶最优性条件,讨论了最优反馈的合成。
Accordingly, the principle of output feedback is used to design an optimal control law for the system in terms of a reasonable performance index.
在此基础上,应用输出反馈原理和合理的性能指标函数设计出系统的最优控制律。
The obtained optimal control law consists of analytical linear feedforward and feedback terms and a nonlinear compensation term which is the limit of the adjoint vector sequence.
得到的最优控制律由解析的线性前馈-反馈项和伴随向量序列极限形式的非线性补偿项组成。
The obtained optimal control law consists of analytical linear feedforward and feedback terms and a nonlinear compensation term which is the limit of the adjoint vector sequence.
得到的最优控制律由解析的线性前馈-反馈项和伴随向量序列极限形式的非线性补偿项组成。
应用推荐