我当时经常说:“2的幂是有魔力的”。
当指定一个缓冲区大小时,该值必须是2的幂。
When you specify a buffer size, the value must be a power of 2.
按在节点的次幂按钮打开节点。
似乎有点讽刺,可别轻幂地看我。
传输较小的数据必须是2的幂,并是自然对齐的。
Transfers smaller than that must be a power of two and be naturally aligned.
该方法不需要安全或者等幂。
它的确有一个隐藏的假设:ALIGN是2的幂。
It does have the hidden assumption that ALIGN is a power of two.
并由此得出幂和问题的一些新的性质。
Consequently we obtain some new proposition for the power sum problem.
然而转化为求对角矩阵的方幂比较困难。
However, seeking a power of diagonal matrix is very difficult usually.
下面的示例使用了pi和幂的计算。
我们需要知道求幂运算的逆运算的难度。
We need to know how hard it is to reverse the exponentiation.
两试样熔体的剪切流动大体上服从幂律。
The shear flow of two melts approximately obeyed the power law.
某一数或量的三次幂。
九的六次幂是多少?。
某一数或量的三次幂。
计算结果表明,幂律方程对本体系最为适用。
The results show that index-law equation is most suitable for this system.
最后还证明了幂等算子和它的伴随是相似的。
In the end we prove that idempotent operator is similar to its adjoint.
“m1幂”来自某校外语专业,期末要考俄语。
"M1 power" from a foreign language school, the end to test Russian.
但是他们的维持电流都与温度是负指数幂关系。
But their holding currents are all negative index number power about temperatures.
可以看到,对于比较小的2的幂次方,浮点数是非常精确的。
As you can see, floats are pretty accurate for small powers of two.
看到整数求幂运算。提示:下面两个函数的选择。
See Integer Exponentiation. Hint: choose either of the bottom two functions.
目的研究一类重要的幂等元半环,即乘法带半环。
Aim To study a very important class of idempotent semiring, so-called multiplicative band semirings.
数学中的一种函数,其中的常数基被提升到变量幂。
In mathematics, a function in which a constant Base is raised to a variable power.
幂等元与本原幂等元在环中有非常重要的地位与作用。
Idempotents and primitive idempotents have very important station in the ring.
GET方法应该是等幂的,意味着它可以安全地重复。
The GET method should also be idempotent, meaning that it can be safely repeated.
我们证明了该算法的收敛定理并把它与幂方法作了比较。
We prove the convergence theory for the algorithm and compare the method with Power method.
如果它是有限和非空的,则它必须包含至少一个幂等元。
If it is finite and nonempty, then it must contain at least one idempotent.
通过幂等的定义,给出了两种符号幂等模式矩阵的结构。
Meanwhile, we give two structures of the sign idempotent by the definition of idempotent.
通过幂等的定义,给出了两种符号幂等模式矩阵的结构。
Meanwhile, we give two structures of the sign idempotent by the definition of idempotent.
应用推荐