This paper summarizes the study on options pricing in view of quantum finance, such as the path integrals approach, the gauge theory of arbitrage, and the quantum model of binomial option pricing.
综述了新兴的量子金融理论在期权定价上的应用,包括量子力学路径积分方法和虚拟套利动态测量理论,以及二项式期权定价的量子模型。
In this paper, the arbitrage portfolio model is directly obtained based on the description of arbitrage Pricing Theory when there are arbitrage opportunities.
本文根据套利定价理论的基本描述,直接得到存在套利机会的情况下求解套利组合的模型。
Whether we can not use capital pricing model, then avoid joint hypothesis in the empirical process, arbitrage the kernel of finance theory becomes the breach of the problem.
实证过程中是否可以不使用资产定价模型,进而回避联合检验,金融中的核心理论——套利成为解决该问题的突破口。
Asset pricing Theory is the core in modern finance. The two fundamental approaches of asset pricing are the no-arbitrage and the equilibrium.
资产定价理论是现代金融学的核心内容,资产定价的两个基本方法是现代的无套利方法和传统的均衡方法。
Despite that modern option pricing theory can give an accurate describe of the interest rate movement, no arbitrage model, the equilibrium model, the martingale model all have deficit.
尽管现代期权理论能对利率运动给出“精确”描述,然而,无论是无套利模式、均衡模式还是鞅模式,均存在一定的缺点。
Through the stochastic discount factor model, it is easy to understand some classical problems of modern finance, such as arbitrage pricing theory and risk neutral pricing, etc.
现代金融学的许多经典问题,如套利定价原理以及风险中性定价等都可以用随机折现因子模型理解,随机折现因子模型是资产定价模型的统一框架。
Through the stochastic discount factor model, it is easy to understand some classical problems of modern finance, such as arbitrage pricing theory and risk neutral pricing, etc.
现代金融学的许多经典问题,如套利定价原理以及风险中性定价等都可以用随机折现因子模型理解,随机折现因子模型是资产定价模型的统一框架。
应用推荐